
PERFORM Documentation

Christopher R. Wentland

Feb 01, 2022

USER GUIDE

1 Data-driven Modeling for Complex Fluid Physics 3

2 Acknowledgements 5
2.1 Quick Start . 5

2.1.1 Dependencies . 5
2.1.2 Installing . 5
2.1.3 Running . 6
2.1.4 Testing . 6

2.2 Example Cases . 6
2.2.1 Sod Shock Tube . 7
2.2.2 Transient Contact Surface . 7
2.2.3 Standing Flame w/ Artificial Forcing . 9
2.2.4 Transient Flame . 9

2.3 Inputs . 11
2.3.1 solver_params.inp . 11
2.3.2 Mesh File . 13
2.3.3 Chemistry File . 13
2.3.4 Initial Condition Inputs . 14
2.3.5 rom_params.inp . 16

2.4 Outputs . 16
2.4.1 Unsteady Solution Data . 16
2.4.2 Visualizations . 17

2.5 Input Parameter Index . 17
2.5.1 solver_params.inp . 17
2.5.2 Mesh File . 21
2.5.3 Chemistry File . 21
2.5.4 Piecewise Uniform IC File . 22
2.5.5 rom_params.inp . 22

2.6 Miscellanea . 24
2.6.1 Running in “Steady” Mode . 24

2.7 Issues and Contributing . 25
2.8 Governing Equations . 25
2.9 Flux Schemes . 26

2.9.1 Inviscid Flux Schemes . 26
2.9.2 Viscous Flux Schemes . 26

2.10 Gradient Limiters . 27
2.10.1 Barth-Jespersen Limiter . 27
2.10.2 Venkatakrishnan Limiter . 27

2.11 Boundary Conditions . 27
2.11.1 Inlet BCs and Parameters . 27

i

2.11.2 Outlet BCs and Parameters . 28
2.11.3 Boundary Perturbations . 29

2.12 Time Integrators . 29
2.12.1 Explicit Integrators . 30
2.12.2 Implicit Integrators . 31
2.12.3 Dual Time-stepping . 31

2.13 Gas Models . 31
2.13.1 Calorically-perfect Gas . 32
2.13.2 Thermally-perfect Gas . 32

2.14 Reaction Models . 32
2.14.1 Finite-rate Mechanisms . 32

2.15 Reduced-order Modeling . 33
2.15.1 Intrusive ROMs . 34
2.15.2 Non-intrusive ROMs . 34
2.15.3 ROMs in PERFORM . 35

2.16 ROM Input Files . 35
2.16.1 rom_params.inp . 35
2.16.2 Feature Scaling Profiles . 36
2.16.3 Model Objects . 37

2.17 Linear Subspace Projection ROMs . 38
2.17.1 Galerkin Projection . 39
2.17.2 LSPG Projection . 39
2.17.3 SP-LSVT Projection . 40

2.18 Non-linear Subspace Projection ROMs . 40
2.18.1 Manifold Galerkin Projection . 41
2.18.2 Manifold LSPG Projection . 42
2.18.3 SP-LSVT Projection . 42

2.19 License . 43
2.20 References . 43

Bibliography 45

ii

PERFORM Documentation

PERFORM is a combination 1D compressible reacting flow solver and modular reduced-order model (ROM) frame-
work, designed to provide a simple, easy-to-use testbed for members of the ROM community to quickly prototype
and test new methods on challenging (yet computationally-manageable) reacting flow problems. The baseline solver
is based off the General Equations and Mesh Solver (GEMS)[DXSM04], a Fortran 3D reacting flow solver origi-
nally developed by Li Ding and Guoping Xia at Purdue University. This code has obviously been simplified to one-
dimensional flows, but it aims to be a) open-source, freely available to copy and modify for everyone, and b) much
more approachable for researchers outside the high-performance computing community. We hope that this tool lowers
the barrier to entry for researchers from a variety of fields to develop novel ROM methods and benchmark them against
an interesting set of reacting flow configurations.

This documentation serves as a reference for users to get up and running with PERFORM, understand the underlying
solver (albeit very superficially), and become acquainted with implementing new ROM routines and evaluating their
performance. The mathematical theory behind the solver and ROM methods is only touched on briefly; we refer
the interested reader to compile the solver documentation from perform/doc/solver_theory/main.tex for more
details. This website and the theory documentation is very much a work-in-progress and will be updated regularly.

USER GUIDE 1

PERFORM Documentation

2 USER GUIDE

CHAPTER

ONE

DATA-DRIVEN MODELING FOR COMPLEX FLUID PHYSICS

This code also serves as a companion code for the workshop on Data-driven Modeling for Complex Fluid Physics,
presented at the 2021 AIAA SciTech Forum. Details on the workshop and several proposed benchmark cases can be
found at the workshop website. The proposed benchmark cases, among others, are provided in perform/examples/
. Those interested in keeping up-to-date on workshop activities can send an email to romworkshop [at] gmail
[dot] com requesting to be added to the workshop mailing list.

3

https://sites.google.com/umich.edu/romworkshop/home

PERFORM Documentation

4 Chapter 1. Data-driven Modeling for Complex Fluid Physics

CHAPTER

TWO

ACKNOWLEDGEMENTS

Christopher R. Wentland acknowledges support from the US Air Force Office of Scientific Research through the Cen-
ter of Excellence Grant FA9550-17-1-0195 (Technical Monitors: Fariba Fahroo, Mitat Birkan, Ramakanth Munipalli,
Venkateswaran Sankaran). This work has also been supported by a grant of computer time from the DOD High Per-
formance Computing Modernization Program.

2.1 Quick Start

2.1.1 Dependencies

PERFORM is a pure Python code and does not (as of the writing of this section) depend on any non-Python software.
As such, everything can be installed directly through pip and is done so through the pip install command explained
below.

The minimum required Python version is 3.6, but is only actively tested with Python 3.8. Additionally, it is only actively
test in Ubuntu 20.04, but should run without many problems on other Linux distributions, Windows Subsystem for
Linux (WSL), and macOS. Some issues have been noted in non-Ubuntu OS’s when executing Bash scripts used for
downloading data from Google Drive and executing tests.

The baseline solver only requires three additional packages: numpy, scipy, and matplotlib. These will be installed,
or updated if your local installations are older than the minimum required versions, upon installing PERFORM.

Neural network ROM models using TensorFlow-Keras of course depend on tensorflow, though the code will only
throw an error if you attempt to run one of those models and so does not require tensorflow to run the baseline solver
or other ROM models. These models are only tested for the most recent production release of TensorFlow 2, and we
make no guarantees that the code will work correctly or optimally for older versions (and will definitely not work with
TensorFlow 1).

2.1.2 Installing

To get up and running with PERFORM, first clone the source code repository by executing the following command
from your terminal command line:

git clone https://github.com/cwentland0/perform.git

or use your Git client of choice, along with the above HTTPS address. PERFORM is currently installed locally via pip
(or pip3, if your pip does not automatically install for your Python 3 distribution). To do this, enter the PERFORM
root folder and execute

pip install -e .

5

PERFORM Documentation

This will install PERFORM, as well as any required package dependencies which you have not yet installed.

2.1.3 Running

After installation is complete, a new script, perform, will be added to you Python scripts. This is the command that
you will use to execute PERFORM, followed by the path to the working directory of the case you would like to run,
e.g.

perform /path/to/working/directory

The working directory of a case is dictated by the presence of a solver_params.inp file, described in detail in
solver_params.inp. The code will not execute if there is not a properly-formatted solver_params.inp file in the
specified working directory. If you are running a ROM case, an additional rom_params.inp file must also be
placed in the working directory. This file is described in detail in rom_params.inp.

You can check that PERFORM works by entering any of the example case directories (e.g. perform/examples/
shock_tube) and executing

perform .

If running correctly, your terminal’s STDOUT should start filling with output from each time step iteration and live
field and probe plots should appear on your screen. Alternatively, you can run the test suite described below to check
that your installation works as expected.

2.1.4 Testing

A suite of unit, integration, and regression tests are included in perform/tests/. These can be run manually from
the PERFORM root directory by executing

tests/run_tests.sh

This will automatically run unit and integration tests and report whether they succeeded or failed. You will then be
prompted as to whether you would like to run the regression tests. These can take a while to complete, and really only
needs to be checked before submitting a pull request. Note that the regression tests use the included example cases, so
if you altered the input files for those cases then make sure to reset them before executing the regression tests.

2.2 Example Cases

Several example cases are provided in perform/examples/ to get you familiar with input file formatting and the
various solver outputs. They are presented in a rough hierarchy of ROM modeling difficulty, starting from the simplest
and building in difficulty by introducing additional complex physical phenomena. Ideally, new ROM methods should
be tested for all problems, and their relative strengths and weaknesses in tackling each problem should be exposed in
detail.

Additionally, sample ROM input files may be downloaded via setup_sample_rom.sh files included in the
standing_flame and transient_flame sample case directories. After running the scripts, the ROM cases can
be immediately executed with perform ..

6 Chapter 2. Acknowledgements

PERFORM Documentation

2.2.1 Sod Shock Tube

The Sod shock tube is a classic benchmark problem. The setup of the problem models two “chambers” of gas, one
at a high pressure and density and the other at a low pressure and density, separated by a diaphragm. The start of
the simulation models this diaphragm instantly bursting, with a shock/contact wave combo traveling through the low-
pressure gas and a rarefaction wave traveling through the high pressure gas.

This case presents a multitude of challenges for ROMs, featuring several phenomena which can be found in reacting
flows, even though this case is a single-species non-reacting flow. Traditional linear subspace ROMs experience strong
ringing artifacts near the shock and contact, while most static solution representations fail to propagate the waves
beyond the model training period.

2.2.2 Transient Contact Surface

This case introduces a multiple chemical species (two, to be exact) configuration, featuring a low-temperature “reactant”
species and a high-temperature “product” species, all at a uniform pressure and velocity. The gas’s average velocity of
10 m/s propels the resulting contact surface downstream. The viscosity and reaction are turned off for this case.

2.2. Example Cases 7

PERFORM Documentation

Similarly to the Sod shock tube, this case exhibits strong gradients in temperature and species mass fraction that can be
difficult for traditional linear subspace methods to capture, along with a transient wave which can be hard to propagate
beyond the model training period. Frankly, this case may be even easier than the Sod shock tube, but serves as a gentle
introduction to the multi-species formulation.

Contact Surface w/ Artificial Forcing

To introduce additional complexity to the transient contact surface case, the user may apply artificial pressure forcing
at the outlet to introduce an acoustic wave propagating upstream. The differing density between the cold reactant and
hot product species results in different local sounds speeds, which makes for some interesting system acoustics which
can be challenging for ROMs to reproduce.

8 Chapter 2. Acknowledgements

PERFORM Documentation

2.2.3 Standing Flame w/ Artificial Forcing

This case is similar to the contact surface in the sense that it features a cold “reactant” species and a hot “product”
species. However, the viscosity and reaction are turned on for this case, with a single-step irreversible reaction mecha-
nism which simply converts “reactant” to “product”. Additionally, the bulk velocity of the fluid is decreased to the point
that the reaction and diffusion is perfectly balanced with the bulk velocity, resulting in an effectively stationary flame.
Artificial pressure forcing is applied at the outlet, causing a single-frequency acoustic wave to propagate upstream.

This is an incredibly simple reacting flow problem, one which linear subspace ROMs should nail with only a few trial
basis modes. This is not surprising, as the flow is largely stationary, with all fluctuations exhibiting a fixed frequency
and amplitude. However, we’ve observed that non-linear autoencoder projection ROMs may fail even for this simple
case, and users should take care to check whether their methods succeed.

A setup_sample_rom.sh script is also provided to download input files for a linear MP-LSVT projection ROM.
Simply execute the script and the necessary input files will be unpacked, after which the ROM may be executed normally.

2.2.4 Transient Flame

This case exhibits all of the features of the previous test cases: a cold “reactant” species diffusing into a hot “product”
species, a single-step reaction mechanism, and a higher bulk fluid velocity to cause the flame to advect downstream.
The sharp gradients in temperature and species mass fraction, the stiff reaction source term, and the bulk advection of
the sharp gradients make for a fairly challenging problem.

2.2. Example Cases 9

PERFORM Documentation

A setup_sample_rom.sh script is also provided to download input files for a non-linear autoencoder MP-LSVT
projection ROM via TensorFlow-Keras. Simply execute the script and the necessary input files will be unpacked, after
which the ROM may be executed normally. Note that the execution of this ROM is expected to be much, much slower
than that of the FOM, as deep autoencoder ROMs are notoriously computationally expensive.

Transient Flame w/ Artificial Forcing

The complexity of the transient flame problem may be further increased by applying artificial pressure forcing at the
outlet, causing an acoustic wave to propagate upstream. As the amplitude and frequency of the forcing is increased,
the interaction between the system acoustics and the flame becomes increasingly complex.

These highly non-linear interactions lie at the core of the problems the authors are working to tackle, namely the often-
disastrous feedback loop between unsteady reaction heat release and system acoustics in modern combustion devices

10 Chapter 2. Acknowledgements

PERFORM Documentation

such as rocket or gas turbine combustors.

2.3 Inputs

This section outlines the various input files that are required to run PERFORM, as well as the input parameters that
are used in text input files. If you are having issues running a case (in particular, experience a KeyError error) or
observing strange solver behavior, please check that all of your input parameters are set correctly, and use this page as
a reference. Examples of some of these files can be found in the example cases in perform/examples/.

All text input files are parsed using regular expressions. All input parameters must be formatted as input_name =
input_value, with as much white space before and after the equals sign as desired. A single line may contain a single
input parameter definition, denoted by a single equals sign. An input file may contain as many blank lines as desired,
and any line without an equals sign will be ignored (useful for user comments). Examples of various input parameters
are given below

sample user comment
samp_string = "example/string_input"
samp_int = 3
samp_float_dec = 3.14159
samp_float_sci = 6.02214e23
samp_bool = False
samp_list = [1.0, 2.0, 3.0]
samp_list_of_lists = [["1_1", "1_2"],["2_1", "2_2"]]

As a rule, you should write input values as if you were writing them directly in Python code. As seen above, string
values should be enclosed in double quotes (single quotes is also valid), boolean values should be written precisely
as False or True (case sensitive), lists should be enclosed by brackets (e.g. [val_1, val_2, val_3]), and lists
of lists should be formatted in kind (e.g. [[val_11, val_12],[val_21, val_22]]). Even if a list input only has
one entry, it should be formatted as a list in the input file. Certain input parameters also accept a value of None (case
sensitive). Each input_name is case sensitive, and string input parameters are also case sensitive. We are working on
making these non-case sensitive where it’s possible.

Below, the formats and input parameters for each input file are described. For text file inputs, tables containing all pos-
sible parameters are given, along with their expected data type, default value and expected units of measurement (where
applicable). Note that expected types of list of lists is abbreviated as lol for brevity. For detailed explanations of
each parameter, refer to Input Parameter Index.

2.3.1 solver_params.inp

The solver_params.inp file is a text file containing input parameters for running all simulations, FOM or ROM. It
is the root input file from which the gas file, mesh file, and initial condition file are specified. Further, this file specifies
all parameters related to the flux scheme, time discretization, robustness control, unsteady outputs, and visualizations.
It must be placed in the working directory, and must be named solver_params.inp. Otherwise, the code will
not function.

Table 1: solver_params.inp input parameters
Parameter Type Default Units
chem_file str - -
mesh_file str - -
init_file str - -
ic_params_file str - -

continues on next page

2.3. Inputs 11

PERFORM Documentation

Table 1 – continued from previous page
Parameter Type Default Units
dt float - s
time_scheme str - -
time_order int - -
num_steps int - -
subiter_max int 50 -
res_tol float 1e-12 Unitless
dual_time bool True -
dtau float 1e-5 s
adapt_dtau bool False -
cfl float 1.0 Unitless
vnn float 20.0 Unitless
run_steady bool False -
steady_tol float 1e-12 Unitless
invisc_flux_scheme str "roe" -
visc_flux_scheme str "invisc" -
space_order int 1 -
grad_limiter str "none" -
bound_cond_inlet str - -
press_inlet float - BC-dependent
vel_inlet float - BC-dependent
temp_inlet float - BC-dependent
rho_inlet float - BC-dependent
mass_fracs_inlet list of float - BC-dependent
pert_type_inlet str - -
pert_perc_inlet float - Unitless
pert_freq_inlet list of float - 1/s
bound_cond_outlet str - -
press_outlet float - BC-dependent
vel_outlet float - BC-dependent
temp_outlet float - BC-dependent
rho_outlet float - BC-dependent
mass_fracs_outlet list of float - BC-dependent
pert_type_outlet str - -
pert_perc_outlet float - Unitless
pert_freq_outlet list of float - 1/s
vel_add float 0.0 m/s
stdout bool True -
res_norm_prim list of float [1e5, 10, 300, 1] [Pa, m/s, K, unitless]
source_off bool False -
save_restarts bool False -
restart_interval int 100 -
num_restarts int 20 -
init_from_restart bool False -
probe_locs list of float [None] m
probe_vars list of str [None] -
out_interval int 1 -
prim_out bool True -
cons_out bool False -
source_out bool False -

continues on next page

12 Chapter 2. Acknowledgements

PERFORM Documentation

Table 1 – continued from previous page
Parameter Type Default Units
hr_out bool False -
rhs_out bool False -
vis_interval int 1 -
vis_show bool True -
vis_save bool False -
vis_type_X str - -
vis_var_X list of str - -
vis_x_bounds_X lol of float [[None,None]] plot-dependent
vis_y_bounds_X lol of float [[None,None]] plot-dependent
probe_num_X int - -
calc_rom bool False -

2.3.2 Mesh File

The mesh file is a text file containing input parameters for defining the computational mesh. The name and location of
the mesh file is arbitrary, and is referenced from the mesh_file input parameter in solver_params.inp.

As of the writing of this section, PERFORM can solve on uniform meshes. Thus, the defining parameters are fairly
simple.

Table 2: Mesh file inputs
Parameter Type Default Units
x_left float - m
x_right float - m
num_cells int - -

2.3.3 Chemistry File

The chemistry file is a text file containing input parameters for defining properties of the chemical species modeled in
a given simulation, along with parameters which define the reactions between these species. The name and location of
this file are arbitrary, and is referenced from the chem_file input parameter in solver_params.inp.

The set of parameters which is required for any gas or reaction model are given in Universal Chemistry Inputs. Those
required for a calorically-perfect gas model (gas_model = "cpg") are given in CPG Inputs. Those required for a
finite-rate irreversible reaction model (reaction_model = "fr_irrev") are given in Finite Rate Irreversible Reac-
tion Inputs. To be abundantly clear, these parameters should all be given in the same chemistry file, but they are
split into different sections here for clarity.

Universal Chemistry Inputs

The parameters described here are required for any combination of gas model and reaction model.

Table 3: Universal chemistry file inputs
Parameter Type Default Units
gas_model str "cpg" -
reaction_model str "none" -
num_species int - -
species_names list of str - -
mol_weights list of float - g/mol

2.3. Inputs 13

PERFORM Documentation

CPG Inputs

The parameters described here are required when using a calorically-perfect gas model, i.e. when setting gas_model
= "cpg".

Table 4: CPG chemistry file inputs
Parameter Type Default Units
enth_ref list of float - J/kg
cp list of float - J/K-kg
pr list of float - Unitless
sc list of float - Unitless
temp_ref list of float - K
mu_ref list of float - N-s/m2

Finite Rate Irreversible Reaction Inputs

The parameters described here are required when using a finite-rate irreversible reaction model, i.e. when setting
reaction_model = "fr_irrev".

Table 5: Finite rate irreversible reaction model chemistry file inputs
Parameter Type Default Units
nu lol of float - Unitless
nu_arr lol of float - Unitless
act_energy list of float - kJ/mol
pre_exp_fact list of float - Unitless
temp_exp list of float - Unitless

2.3.4 Initial Condition Inputs

Unsteady solutions can be initialized in three different ways in PERFORM: piecewise uniform function parameters
files (Piecewise Uniform IC File), full primitive state NumPy profiles (NumPy Primitive IC File), or restart files (Restart
Files). If multiple restart methods are requested, the following priority hierarchy is followed: restart files first, then
primitive state NumPy files, and finally a piecewise uniform function.

Piecewise Uniform IC File

The piecewise uniform initial condition file is a text file containing input parameters for initializing a simulation from a
two-section piecewise uniform profile describing the full primitive state. This is done by specifying a “left” and “right”
primitive state, and a spatial point on the computational mesh at which the two states are separated. This is ideal for
initializing problems like the Sod Shock Tube or flames.

14 Chapter 2. Acknowledgements

PERFORM Documentation

Table 6: Piecewise uniform IC inputs
Parameter Type Default (Units) Units
x_split float - m
press_left float - Pa
vel_left float - m/s
temp_left float - K
mass_fracs_left list of float - Unitless
press_right float - Pa
vel_right float - m/s
temp_right float - K
mass_fracs_right list of float - Unitless

NumPy Primitive IC File

Providing a complete primitive state profile is by far the simplest initialization method available. The init_file
parameter in solver_params.inp provides the arbitrary location of a NumPy binary (*.npy) containing a single
NumPy array. This NumPy array must be a two- or three-dimensional array, where the first dimension is the number
of governing equations in the system (3 + num_species - 1) and the second dimension is the number of cells in the
discretized spatial domain. The order of the first dimension must be ordered by pressure, velocity, temperature, and
then chemical species mass fraction. The chemical species mass fractions must be ordered as they are in the chemistry
file. The optional third dimension is the time step dimension; if a higher-order time integration method is requested,
the initial condition profile may provide prior time steps to preserve this order of accuracy upon initialization. If only
one time step or a two-dimensional profile is provided, the time integrator will attempt to “cold start” from a first-order
scheme.

This file can be generated however you like, such as ripping it manually from the unsteady outputs of a past PER-
FORM run, or generating a more complex series of discontinuous steps than what the ic_params_file settings
handle natively.

Restart Files

Restart files accomplish what the name implies: restarting the simulation from a previous point in the simulation.
Restart files are saved to the restart_files directory in the working directory when save_restarts = True at an
interval specified by restart_interval in solver_params.inp. Two files are saved to reference a restart solution:
a restart_iter.dat file and a restart_file_X.npz file, where X is the restart iteration number. The latter file
contains both the conservative and primitive solution saved at that restart iteration, as well as the physical solution
time associated with that solution. The former file is an text file containing the restart iteration number of the most
recently-written restart file, and thus points to which restart_file_X.npz should be read in to initialize the solution.
It is overwritten every time a restart file is written. Similarly, the maximum number of restart_file_X.npz saved
to disk is dictated by num_restarts. When this threshold is reached, the restart iteration number will loop back to 1
and begin overwriting old restart files.

Setting init_from_restart = True will initialize the solution from the restart file whose restart iteration number
matches the one given in restart_iter.dat. Thus, without modification, the solution will restart from the most
recently generated restart file. However, if you want to restart from a different iteration number, you can manually
change the iteration number stored in restart_iter.dat.

2.3. Inputs 15

PERFORM Documentation

2.3.5 rom_params.inp

The rom_params.inp file is a text file containing input parameters for running ROM simulations. It must be placed
in the working directory, the same directory as its accompanying solver_params.inp file. Parameters in this file
are detailed in rom_params.inp.

2.4 Outputs

2.4.1 Unsteady Solution Data

Field Data

Unsteady field data represents the time evolution of an unsteady field at the time step iteration interval
specified by out_interval in solver_params.inp. All unsteady field data is written to working_dir/
unsteady_field_results, and currently comes in five flavors: primitive state output, conservative state output,
source term output, heat release output, and RHS term output. With the exception of the heat release output, all have
the same general form: a NumPy binary file containing a single NumPy array with three dimensions. The first di-
mension is the number of variables, the second is the number of cells in the computational mesh, and the third is the
number of time steps saved in the output file. The primitive state, conservative state, and RHS term output have the
same number of variables, equal to the number of governing equations (3 + num_species - 1), while the source term
only has (num_species - 1) variables. Heat release output only has two dimensions, the first for the number of cells
and the second for the number of time steps.

Primitive state field data is saved if prim_out = True and has the prefix sol_prim_*. Conservative state field data is
saved if cons_out = True and has the prefix sol_cons_*. Source term field data is saved if source_out = True
and has the prefix source_*. RHS term field data is saved if rhs_out = True and has the prefix rhs_*. Heat release
field data is saved if hr_out = True and has the prefix heat_release_*.

Unsteady field data may have three different main suffixes, depending on solver parameters: *_FOM for an unsteady
full-order model simulation, *_steady for a “steady” full-order model simulation (see Running in “Steady” Mode)
for details), or *_ROM for a reduced-order model simulation. An additional suffix, *_FAILED, is also appended if
the solver fails (solution blowup). Thus, the conservative field results for a failed ROM run would have the name
sol_cons_ROM_FAILED.npy, while a successful run would simply generate sol_cons_ROM.npy.

Probe Data

Probe/point monitor data represents the time evolution of an unsteady field variable at a single finite volume cell.
Probe locations are specified by probe_locs in solver_params.inp, and the fields to be measured are specified by
probe_vars. Valid options for probe_vars can be found in Input Parameter Index. Probe measurements are taken
at every physical time step. Data for each probe is saved to a separate file in working_dir/probe_results. Each
has the format of a NumPy binary file containing a single two-dimensional NumPy array. The first dimension is the
number of variables listed in probe_vars plus one, as the physical solution time is also stored at each iteration. The
second dimension is the number of physical time steps for which the simulation was run.

The name of each probe begins with probe_*, and is followed by a list of the variables stored in the probe data. Finally,
the same suffixes mentioned above are applied depending on the solver settings: *_FOM`, ``*_steady, and *_ROM.
Again, if the solver fails, the suffix *_FAILED will also be appended. Finally, the 1-indexed number of a the probe will
be appended to the end of the file. For example, the second probe monitoring the velocity and momentum of a “steady”
solve which fails will have the file name probe_velocity_momentum_2_steady_FAILED.npy.

16 Chapter 2. Acknowledgements

PERFORM Documentation

Restart Files

All restart file data is stored in working_dir/restart_files. Please refer to Restart Files for details on the format-
ting and contents of restart files.

2.4.2 Visualizations

During simulation runtime, PERFORM is capable of generating two types of plots via matplotlib: field plots
and probe monitor plots. If vis_show = True in solver_params.inp, then these images are displayed on the
user’s monitor. If vis_save = True, they are saved to disk. The interval of displaying/saving the figures is given
by vis_interval. Each figure corresponds to a single instance of vis_type_X, within which there may be several
plots. Each probe figure corresponds to a single probe, from which multiple probed variables may be extracted.

All saved images are PNG images stored within working_dir/image_results.

Field Plots

Field Plots display instantaneous snapshots of the entire field with the field data plotted on the y-axis and cell center
coordinates plotted on the x-axis.

Field plots save an instantaneous snapshot of the field plots at the interval set by vis_interval. These are stored
within a subdirectory following the same pattern given to field data files, except the prefix of the directory is given
by working_dir/image_results/field_*. Within this subdirectory, individual images have the prefix fig_*,
followed by the number of the image in the series of expected image numbers to be generated by a given run. If a
simulation terminates early any field plots that were expected to be generated will not be generated.

Probe Plots

Probe plots display the entire time history of the probed data up to the most recent plotting interval reached by the
simulation, with the probed variable data plotted on the y-axis and time plotted on the x-axis.

A single figure is saved to disk for a given probe figure. It if first written after vis_interval time steps, after which
the same file is overwritten at the interval specified by vis_interval. The names of probe plots follow the same
pattern given to the probe data files (except with the file extension *.png, of course).

2.5 Input Parameter Index

This section provides a comprehensive index of all solver input parameters for the text input files detailed in Inputs.

2.5.1 solver_params.inp

See solver_params.inp for variable types, default values, and units (where applicable).

• mesh_file: Path to mesh file. Permits absolute path, or relative path from working directory.

• chem_file: Path to chemistry file. Permits absolute path, or relative path from working directory.

• init_file: Path to full initial primitive state profile (stored in a *.npy NumPy binary file) to initialize the
unsteady solution from. Permits absolute path, or relative path from working directory. If ic_params_file is
set, or init_from_restart = True, this parameter will be ignored.

2.5. Input Parameter Index 17

PERFORM Documentation

• ic_params_file: Path to left/right (step function) primitive state parameters file to initialize the unsteady
solution from. Permits absolute path, or relative path from working directory. If init_from_restart = True,
this parameter will be ignored.

• dt: Fixed time step size for numerical time integration.

• time_scheme: Name of numerical time integration scheme to use. Please see the theory documentation for
details on each scheme.

– Valid options: ssp_rk3, classic_rk4, jameson_low_store, bdf

• time_order: Order of accuracy for the chosen time integrator. Some time integrators have a fixed order of
accuracy, while others may accept several different values. If a time integrator has a fixed order of accuracy
and you have entered a different order of accuracy, a warning will display but execution will continue. If a time
integrator accepts several values and an invalid value is entered, the solver will terminate with an error.

• num_steps: Number of discrete physical time steps to run the solver through. If the solver fails before this
number is reached (either through a code failure or solution blowup), any unsteady output files will be dumped
to disk with the suffix _FAILED" appended to denote a failed solution.

• subiter_max: The maximum number of subiterations that the iterative solver for implicit time integration
schemes may execute before concluding calculations for that physical time step.

• res_tol: The threshold of convergence of the ℓ2 norm of the Newton iteration residual below which the subit-
eration loop will automatically conclude.

• dual_time: Boolean flag to specify whether dual time-stepping should be used for an implicit time integration
scheme.

• dtau: Fixed value of ∆𝜏 to use for dual time integration. Ignored if adapt_dtau = True.

• adapt_dtau: Boolean flag to specify whether the value of ∆𝜏 should be adapted at each subiteration according
to the below robustness control parameters.

• cfl: Dual time-stepping Courant–Friedrichs–Lewy number to adapt ∆𝜏 based on maximum wave speed in each
cell. Smaller CFL numbers will result in smaller ∆𝜏 , and greater regularization as a result.

• vnn: Dual time-stepping von Neumann number to adapt ∆𝜏 based on the mixture kinematic viscosity in each
cell. Smaller VNN numbers will result in smaller ∆𝜏 , and greater regularization as a result.

• run_steady: Boolean flag to specify whether to run the solver in “steady” mode. See Running in “Steady”
Mode for more details.

• steady_tol: If run_steady = True, the threshold of convergence of the ℓ2 norm of the change in the primi-
tive solution below which the steady solve will automatically conclude.

• invisc_flux_scheme: Name of the numerical inviscid flux scheme to use. Please see the theory documentation
for details on each scheme.

– Valid options: roe

• visc_flux_scheme: Name of the numerical viscous flux scheme to use. Please see the theory documentation
for details on each scheme.

– Valid options: inviscid, standard

• space_order: Order of accuracy of the state reconstructions at the cell faces for flux calculations. Must be a
positive integer. If space_order = 1, the cell-centered values are used. If space_order > 1, finite difference
stencils are used to compute cell-centered gradients, from which higher-order face reconstructions are computed.
If the gradient calculation for the value entered has not been implemented, the solver with terminate with an error.

• grad_limiter: Name of the gradient limiter to use when computing higher-order face reconstructions. Please
see the solver documentation for details on each scheme.

18 Chapter 2. Acknowledgements

PERFORM Documentation

– Valid options: barth_cell, barth_face, venkat

• bound_cond_inlet: Name of the boundary condition to apply at the inlet. For details on each boundary condi-
tion, see the solver documentation. For required input parameters for a given boundary condition, see Inlet BCs
and Parameters.

– Valid options: stagnation, fullstate, meanflow

• press_inlet: Pressure-related value for inlet boundary condition calculations.

• vel_inlet: Velocity-related value for inlet boundary condition calculations.

• temp_inlet: Temperature-related value for inlet boundary condition calculations.

• rho_inlet: Density-related value for inlet boundary condition calculations.

• mass_fracs_inlet: Chemical composition-related value for inlet boundary condition calculations.

• pert_type_inlet: Type of value to be perturbed at the inlet. See Inlet BCs and Parameters for valid options
for each bound_cond_inlet value.

• pert_perc_inlet: Percentage of the specified perturbed value, determining the amplitude of the inlet pertur-
bation signal. Should be entered in decimal format, e.g. for a 10% perturbation, enter pert_perc_inlet =
0.01. See Boundary Perturbations for more details.

• pert_freq_inlet: List of superimposed frequencies of the inlet perturbation. See Boundary Perturbations for
more details.

• bound_cond_outlet: Name of the boundary condition to apply at the outlet. For details on each boundary
condition, see the solver documentation. For required input parameters for a given boundary condition, see
Outlet BCs and Parameters.

• press_outlet: Pressure-related value for outlet boundary condition calculations.

• vel_outlet: Velocity-related value for outlet boundary condition calculations.

• temp_outlet: Temperature-related value for outlet boundary condition calculations.

• rho_outlet: Density-related value for outlet boundary condition calculations.

• mass_fracs_outlet: Chemical composition-related value for outlet boundary condition calculations.

• pert_type_outlet: Type of value to be perturbed at the outlet. See Outlet BCs and Parameters for valid
options for each bound_cond_outlet value.

– Valid options: subsonic, meanflow

• pert_perc_outlet: Percentage of the specified perturbed value, determining the amplitude of the outlet per-
turbation signal. Should be entered in decimal format, e.g. for a 10% perturbation, enter pert_perc_outlet
= 0.1. See Boundary Perturbations for more details.

• pert_freq_outlet: List of superimposed frequencies of the outlet perturbation. See Boundary Perturbations
for more details.

• vel_add: Velocity to be added to the entire initial condition velocity field. Accepts negative values.

• stdout: Boolean flag to specify whether to print iteration counts and residual norms to STDOUT.

• res_norm_prim: List of values by which to normalize each field of the ℓ2 and ℓ1 residual norms before averaging
across all fields. They are order by pressure, velocity, temperature, and then all species mass fractions except the
last. This ensures that the norms of each residual field contribute roughly equally to the average norm used to
determine Newton’s method convergence.

• source_off: Boolean flag to specify whether to apply the reaction source term. This is False by default;
setting it manually to True turns off the source term. This can save computational cost for non-reactive cases.

2.5. Input Parameter Index 19

PERFORM Documentation

• save_restarts: Boolean flag to specify whether to save restart files.

• restart_interval: Physical time step interval at which to save restart files.

• num_restarts: Maximum number of restart files to store. After this threshold has been reached, the count
returns to 1 and the first restart file is overwritten by the next restart file (and so on).

• init_from_restarts: Boolean flag to determine whether to initialize the unsteady solution from

• probe_locs: List of locations in the spatial domain to place point monitors. The probe measures values at the
cell center closest to the specified location. If a location is less than the inlet boundary location, the inlet ghost
cell will be monitored. Likewise, if a location is greater than the outlet boundary location, the outlet ghost cell
will be monitored. These probe monitors are recorded at every physical time iteration and the time history is
written to disk. See Probe Data for more details on the output.

• probe_vars: A list of fields to be probed at each specified probe location.

– Valid for all probes: "pressure", "velocity", "temperature", "density", "momentum", "energy",
"species_X", "density-species_X" (where X is replaced by the integer number of the desired chemical
species to be probed, e.g. "species_2" for the second species specified in the chemistry file).

– Valid options for interior probes only: "source", "heat-release"

• out_interval: Physical time step interval at which to save unsteady field data.

• prim_out: Boolean flag to specify whether the unsteady primitive state should be saved.

• cons_out: Boolean flag to specify whether the unsteady conservative state should be saved.

• source_out: Boolean flag to specify whether the unsteady source term field should be saved.

• hr_out: Boolean flag to specify whether the unsteady heat release rate should be saved.

• rhs_out: Boolean flag to specify whether the unsteady right-hand-side field should be saved.

• vis_interval: Physical time step interval at which to draw any requested field/probe plots. If no plots are
requested, this parameter is ignored.

• vis_show: Boolean flag to specify whether field/probe plots should be displayed on the user’s monitor at the
interval specified by vis_interval. If no plots are requested, this parameter is ignored.

• vis_save: Boolean flag to specify whether field/probe plots should be saved to disk at the interval specified by
vis_interval. If no plots are requested, this parameter is ignored.

• vis_type_X: Type of data to visualize in the Xth figure. For example, vis_type_3would specify the type of the
third plot to be visualized. Values of X must start from 0 and progress by one for each subsequent plot. Any gap
in these numbers will cause any plots after the break to be ignored (e.g. specifying vis_type_0, vis_type_2,
and vis_type_3 without specifying vis_type_1 will automatically ignore the plots for vis_type_2 and
vis_type_3).

– Valid options: field, probe

• probe_num_X: 0-indexed number of the point monitor to visualize in the Xth figure if vis_type_X = "probe".
Must correspond to a valid probe number.

• vis_var_X: A list of fields to be plotted in the Xth figure. Note that for vis_type_X = "probe" figures, if a
specified field is not being monitored at the probe specified by probe_num_X, the solver will terminate with an
error.

• vis_x_bounds_X: List of lists, where each sub-list corresponds to the plots specified in vis_var_X. Each sublist
contains two entries corresponding the lower and upper x-axis bounds for visualization of vis_var_X.

• vis_y_bounds_X: List of lists, where each sub-list corresponds to the plots specified in vis_var_X. Each sublist
contains two entries corresponding the lower and upper y-axis bounds for visualization of vis_var_X.

20 Chapter 2. Acknowledgements

PERFORM Documentation

• calc_rom: Boolean flag to specify whether to run a ROM simulation. If set to True, a rom_params.inp file
must also be placed in the working directory. See rom_params.inp for more details on this input file.

2.5.2 Mesh File

See Mesh File for variable types, default values, and units (where applicable).

• x_left: Left-most boundary coordinate of the spatial domain. This point will be the coordinate of theleft face
of the left-most finite volume cell.

• x_right: Right-most boundary coordinate of the spatial domain. This point will be the coordinate of theright
face of the right-most finite volume cell.

• num_cells: Total number of finite volume cells in the discretized spatial domain.

2.5.3 Chemistry File

We break down the sections of the chemistry file input file, as in Inputs.

Universal Chemistry Inputs

See Universal Chemistry Inputs for variable types, default values, and units (where applicable).

• gas_model: Name of the gas model to be used.

– Valid options: "cpg"

• reaction_model: Name of the reaction model to be used.

– Valid options: "none", "fr_irrev"

• num_species: Total number of species participating in simulation.

• species_names: List of the names of the chemical species. These are only used for labeling plot axes, so they
can be whatever you like (e.g. “methane”, “Carbon Dioxide”, “H2O”). If none are provided, these will default
to ["Species 1", "Species 2", ...].

• mol_weights: Molecular weights of each species. Must have num_species entries.

CPG Inputs

See CPG Inputs for variable types, default values, and units (where applicable).

• enth_ref: Reference enthalpy at 0 K of each species. Must have num_species entries.

• cp: Constant specific heat capacity at constant pressure for each species. Must have num_species entries.

• pr: Prandtl number of each species. Must have num_species entries.

• sc: Schmidt number of each species. Must have num_species entries.

• temp_ref: Reference dynamic viscosity of each species for Sutherland’s law. Must have num_species entries.

• mu_ref: Reference temperature of each species for Sutherland’s law. If temp_ref[i] = 0 for any species, it
will be assumed that its dynamic viscosity is constant and equal to mu_ref[i]. Must have num_species entries.

2.5. Input Parameter Index 21

PERFORM Documentation

Finite Rate Irreversible Reaction Inputs

See Finite Rate Irreversible Reaction Inputs for variable types, default values, and units (where applicable).

• nu: List of lists of irreversible reaction stoichiometric coefficients, where each sublist corresponds to a single
reaction. Reactants should have positive values, while products should have negative values.

• nu_arr: List of lists of irreversible reaction molar concentration exponents for all chemical species, where each
sublist corresponds to a single reaction. Those chemical species that don’t participate in the reaction should just
be assigned a value of 0.0.

• act_energy: List of Arrhenius rate activation energies 𝐸𝑎 for each reaction.

• pre_exp_fact: List of Arrhenius rate pre-exponential factors.

• temp_exp: List of Arrhenius rate temperature exponents.

2.5.4 Piecewise Uniform IC File

See Piecewise Uniform IC File for variable types, default values, and units (where applicable).

• x_split: Location in spatial domain at which the piecewise uniform solution will be split. All cell centers with
coordinates less than this value will be assigned to the “left” state, and those with coordinates greater than this
value will be assigned to the “right” state.

• press_left: Static pressure in “left” state.

• vel_left: Velocity in “left” state.

• temp_left: Temperature in “left” state.

• mass_fracs_left: Species mass fractions in “left” state. Must contain num_species elements, and they must
sum to 1.0.

• press_right: Static pressure in “right” state.

• vel_right: Velocity in “right” state.

• temp_right: Temperature in “right” state.

• mass_fracs_right: Species mass fractions in “right” state. Must contain num_species_full elements, and
they must sum to 1.0.

2.5.5 rom_params.inp

See rom_params.inp for variable types, default values, and units (where applicable). We again break down some distinct
sections of the file.

• rom_method: Name of the ROM method to use.

– Valid options: galerkin, lspg, mplsvt

• var_mapping: Name of the state variable mapping which the ROM models employ.

– Valid options: conservative, primitive

• space_mapping: Name of the mapping type which maps from the latent space to the full-order space.

– Valid options: linear, autoencoder

• num_models: Number of distinct models used to make predictions for the full physical state. For example, if
there is one model to predict the pressure and velocity fields, and another to predict the temperature and mass
fraction fields, then num_models = 2

22 Chapter 2. Acknowledgements

PERFORM Documentation

• latent_dims: A list containing the latent dimension for each model. If using a model with a fixed latent
dimension (e.g. autoencoders), this will be checked against the model object and the code will terminate with an
error if the values do not match

• model_var_idxs: A list of lists where each sublist contains the zero-indexed state variable numbers to
which each model maps. The variable numbers are ordered by density/pressure, momentum/velocity, en-
ergy/temperature, and density-weighted mass fraction/mass fraction (as ordered in the chem_file). For ex-
ample, in a ROM with two models, if the first model maps to velocity and mass fraction, and the second model
maps to pressure and temperature, then model_var_idxs = [[1,3],[0,2]].

• model_dir: Absolute path of the base under which model files and feature scaling profiles are stored.

• cent_ic: Boolean flag to set cent_cons/cent_prim (depending on the ROM method) to the provided initial
condition profile. This is simply a convenience parameter that is useful when performing parametric predictions
and don’t want to repeatedly change the centering profile address.

• norm_sub_cons: List of paths relative to model_dir to the subtractive normalization NumPy binary profiles for
feature scaling of the conservative state variables with which each model is associated. For example, if a model
is associated with density/pressure and energy/temperature, then the corresponding entry in norm_sub_cons
should be for the subtractive normalization profiles for the density and energy fields.

• norm_fac_cons: List of paths relative to model_dir to the factor normalization NumPy binary profiles for
feature scaling of the conservative state variables with which each model is associated. For example, if a model
is associated with density/pressure and energy/temperature, then the corresponding entry in norm_fac_cons
should be for the factor normalization profiles for the density and energy fields.

• cent_cons: List of paths relative to model_dir to the centering NumPy binary profiles for feature scaling of
the conservative state variables with which each model is associated. For example, if a model is associated with
density/pressure and energy/temperature, then the corresponding entry in cent_cons should be for the centering
profile for the density and energy fields.

• norm_sub_prim: List of paths relative to model_dir to the subtractive normalization NumPy binary profiles
for feature scaling of the primitive state variables with which each model is associated. For example, if a model
is associated with pressure and temperature, then the corresponding entry in norm_sub_prim should be for the
subtractive normalization profile for the pressure and temperature fields.

• norm_fac_prim: List of paths relative to model_dir to the factor normalization NumPy binary profiles for
feature scaling of the primitive state variables with which each model is associated. For example, if a model is
associated with pressure and temperature, then the corresponding entry in norm_fac_prim should be for the
factor normalization profile for the pressure and temperature fields.

• cent_prim: List of paths relative to model_dir to the centering NumPy binary profiles for feature scaling of
the primitive state variables with which each model is associated. For example, if a model is associated with
pressure and temperature, then the corresponding entry in cent_prim should be for the centering profile for the
pressure and temperature fields.

Linear Space Mapping Inputs

See Linear Space Mapping Inputs for variable types, default values, and units (where applicable).

• basis_files: List of paths relative to model_dir to the linear trial basis NumPy binary (*.npy) files for each
model.

2.5. Input Parameter Index 23

PERFORM Documentation

Autoencoder Space Mapping Inputs

See Autoencoder Space Mapping Inputs for variable types, default values, and units (where applicable).

• decoder_files: List of paths relative to model_dir to the decoder model objects for each model.

• encoder_files: List of paths relative to model_dir to the encoder model objects for each model.

• decoder_isconv: Boolean flag indicating whether the output of the decoder is a convolutional layer. If this is
True, then decoder_io_format must be specified.

• decoder_io_format: The expected array axis ordering of the state profiles on which the decoder operates, if
decoder_isconv = True. See Neural Networks for more details.

– Valid options: "channels_first", "channels_last"

• encoder_isconv: Boolean flag indicating whether the output of the encoder is a convolutional layer. If this is
True, then encoder_io_format must be specified.

• encoder_io_format: The expected array axis ordering of the state profiles on which the encoder operates, if
encoder_isconv = True. See Neural Networks for more details.

– Valid options: "channels_first", "channels_last"

Machine Learning Library Inputs

See Machine Learning Library Inputs for variable types, default values, and units (where applicable).

• ml_library: Name of the machine learning library which was used to train and serialize any machine learning
models to be used in the ROM.

– Valid options: tfkeras

• run_gpu: Boolean flag to determine whether to run machine learning model inference on the GPU. Please
note that running on the CPU is often faster than running on the GPU for these small 1D problems, as memory
movement between the host and device can be extremely slow and all memory movement operations are blocking.

2.6 Miscellanea

Below are details on PERFORM features that don’t fit neatly into other documentation sections.

2.6.1 Running in “Steady” Mode

Setting the Boolean flag run_steady = True in solver_params.inp slightly alters the solver behavior to run in
a sort of “steady-state solver” mode. To be completely clear, PERFORM is an unsteady solver and there are no
true steady solutions for the types of problems it is designed to simulate. However, this “steady” mode is designed
specifically for solving flame simulations in which bulk advection is carefully balanced with chemical diffusion and
reaction forces, resulting in a roughly stationary flame, which is as close to a steady solution as one can expect for these
cases. This stationary flame acts as a good “mean” flow for stationary flame problems with external forcing, or as an
initial condition for transient flame problems (combined with a non-zero vel_add).

The exact changes in behavior are as follows:

• The ℓ2 and ℓ1 norms displayed in the terminal is the norm of the change in the primitive state between physical
time steps. This is opposed to no residual output for explicit time integration schemes, or the linear solve residual
norm for implicit time integration schemes.

24 Chapter 2. Acknowledgements

PERFORM Documentation

• The time history of the above residual norms will be written to the file working_dir/
unsteady_field_results/steady_convergence.dat.

• The solver will terminate early if the ℓ2 norm of the solution change converges below the tolerance set by
steady_tol in solver_params.inp.

This “steady” solver can be run for both explicit and implicit time integration schemes. The procedure for obtaining
“steady” flame solutions is incredibly tedious, generally requiring carefully manually tuning the boundary conditions
to achieve a certain inlet velocity until a point at which the advection downstream is balanced with the diffusion and
reaction moving upstream. During this tuning procedure, the user often must visually confirm that the flame is not
moving by watching the field plots closely. Again, this process is incredibly tedious, but the “steady” solver helps
facilitate this by providing at least one quantitative metric for determining if a steady flame solution has been achieved.

2.7 Issues and Contributing

If you experience errors or unexpected solver behavior when running PERFORM, please first double-check your input
parameters and use this documentation as a reference for proper input file formatting. If problems persist, please create
a new issue on the GitHub repository, and we’ll do our best to resolve it. However, if a submitted issue is related to a
significant expansion of code capabilities (e.g. adding a new ROM model or flux scheme), we probably won’t work on
it.

On the other hand, if you would like to personally work to expand the code and contribute to PERFORM, first of all
thank you! Please fork the repository under your own GitHub account and implement your contributions. When you’re
finished, create a pull request against the main repository and your changes will be reviewed before being merged.
You can manually check beforehand that your changes do not break code by running Bash script perform/tests/
run_tests.sh, which will execute unit, integration, and regression tests. You can also let GitHub Actions automati-
cally run these tests when you push changes to the remote repo or submit a pull request.

2.8 Governing Equations

PERFORM solves the 1D Navier-Stokes equations with chemical species transport and a chemical reaction source
term. This can be formulated as

𝜕q

𝜕𝑡
+

𝜕

𝜕𝑥
(f − f𝑣) = s

q =

⎡⎢⎢⎣
𝜌
𝜌𝑢

𝜌ℎ0 − 𝑝
𝜌𝑌𝑙

⎤⎥⎥⎦ , f =

⎡⎢⎢⎣
𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌ℎ0𝑢
𝜌𝑌𝑙

⎤⎥⎥⎦ , f𝑣 =

⎡⎢⎢⎣
0
𝜏

𝑢𝜏 − 𝑞
−𝜌𝑉𝑙𝑌𝑙

⎤⎥⎥⎦ , s =

⎡⎢⎢⎣
0
0
0
𝜔̇𝑙

⎤⎥⎥⎦
where q is the conservative state, f is the inviscid flux vector, f𝑣 is the viscous flux vector, and s is the source term.
Additionally, 𝜌 is density, 𝑢 is velocity, ℎ0 is stagnation enthalpy, 𝑝 is static pressure, and 𝑌𝑙 is the mass fraction of the
𝑙th chemical species. For a system with 𝑁𝑌 chemical species, only 𝑁𝑌 − 1 species transport equations are solved, as
the final species mass fraction 𝑌𝑁𝑌

can be computed from the fact that all mass fractions must sum to unity.

The spatial domain is discretized by the finite volume method. Brief notes on available flux calculations schemes
are given in Flux Schemes. Descriptions of gradient limiters for higher-order schemes are given in Gradient Limiters.
Available boundary conditions are described in Boundary Conditions. Available numerical time integrators are detailed
in Time Integrators.

Some details on available gas models for calculating relevant thermodynamic and transport properties are given in Gas
Models. Models for calculating the source term 𝜔̇𝑙 are detailed in Reaction Models.

2.7. Issues and Contributing 25

PERFORM Documentation

Details on each of these topics are provided in the theory documentation. Additionally, those interested in how this
theory may be extended to higher dimensions and to more complex gas/reaction models are directed to Matthew Har-
vazinski’s thesis [Har12]. This details the inner mechanics of GEMS, the high-fidelity 3D combusting flow solver
which PERFORM’s baseline solver is based off of.

2.9 Flux Schemes

This section outlines the various schemes available for computing the inviscid and viscous fluxes of the 1D Navier-
Stokes equations with species transport. For details on the mathematics of each scheme, please refer to the theory
documentation.

2.9.1 Inviscid Flux Schemes

Roe Scheme

This inviscid flux scheme is activated by setting invisc_flux_scheme = "roe" in solver_params.inp. The Roe
scheme follows the approximate Riemann solver of Philip Roe [Roe81]. As of the writing of this section, the code is
not capable of applying an entropy fix for locally-sonic flows, but will be available in a forthcoming release.

2.9.2 Viscous Flux Schemes

Inviscid Scheme

This viscous flux scheme is activated by setting visc_flux_scheme = "invisc" in solver_params.inp. This
scheme simply neglects all contributions from the viscous flux terms.

Standard Viscous Scheme

This viscous flux scheme is activated by setting visc_flux_scheme = "standard" in solver_params.inp. This
scheme computes the contribution from the viscous fluxes terms from the average state at each cell face (in the case of
the Roe flux, the Roe average) and face gradients computed by a second-order accurate finite difference stencil. The
viscous fluxes are then computed directly, with the sole approximation of the diffusion velocity term given by

𝑉𝑙𝑌𝑙 = −𝐷𝑙,𝑀
𝜕𝑌𝑙

𝜕𝑥

where𝐷𝑙,𝑀 is the mass diffusion coefficient for the 𝑙th species diffusing into the mixture. This approximation is inserted
into both the heat flux and species transport viscous flux term. Please see the theory documentation for calculation of
the diffusion coefficients

The calculation of individual species diffusion velocities is incredibly expensive, necessitating this approximation.
However, this may lead to violations of mass conservation in solving the species transport equations. A correction
velocity term is included which helps mitigate this, and is described in detail in the theory documentation.

26 Chapter 2. Acknowledgements

PERFORM Documentation

2.10 Gradient Limiters

For higher-order face reconstructions with a fixed stencil, gradient limiters are required to prevent excessive oscillations
near sharp gradients. When initializing simulations from a strong step function (ic_params_file), a gradient limiter
is practically required to ensure simulation stability (at least for the first few time steps).

2.10.1 Barth-Jespersen Limiter

The Barth-Jespersen gradient limiter [BJ89] is activated by setting either grad_limiter = "barth_cell" or
grad_limiter = "barth_face" in solver_params.inp. The former computes the limiter based on unconstrained
state reconstructions at neighboring cell centers, while the latter does so at the cell faces. This limiter guarantees that
no new local maxima or minima are created by the higher-order face reconstructions. However, the gradient limiter
calculation is non-differentiable (due to a minimum function), which can negatively affect convergence of the solver.

2.10.2 Venkatakrishnan Limiter

The Venkatakrishnan gradient limiter [Ven93] is activated by setting grad_limiter = "venkat" in
solver_params.inp. The Venkatakrishnan limiter improves on the Barth-Jespersen limiter by replacing the
non-differentiable minimum function with a smooth polynomial function. This has the effect of improving solver
convergence, but has the negative consequence of limiting the solution in smooth regions and more aggressively
smoothing discontinuities.

2.11 Boundary Conditions

Boundary conditions in PERFORM are enforced by an explicit ghost cell formulation. As noted in solver_params.inp,
the requirements and interpretations of the *_inlet and *_outlet input parameters depend on the boundary condition
specified by bound_cond_inlet / bound_cond_outlet. Valid options of pert_type for each boundary condition
are also specified. If an invalid entry for pert_type is supplied, it will simply be ignored. For the mathematical
definitions of these boundary conditions, please refer to the solver theory documentation.

In the following sections, we provide which additional input parameters are required and how they are interpreted for
each valid entry of bound_cond_inlet/bound_cond_outlet. Additionally, the acceptable values to be artificially
perturbed for each boundary condition are given under pert_type_inlet/pert_type_outlet.

2.11.1 Inlet BCs and Parameters

Fixed Stagnation Temperature and Pressure Inlet

This boundary condition is activated by setting bound_cond_inlet = "stagnation" in solver_params.inp.
This boundary specifies the upstream stagnation temperature and stagnation pressure, i.e. the temperature and pressure
of the fluid when its velocity is brought to zero. Tho boundary condition results in reflections of acoustic waves and
should not be used with unsteady calculations with significant system acoustics.

The applicable boundary condition input parameters are as follows:

• press_inlet: Specified stagnation pressure at the inlet.

• temp_inlet: Specified stagnation temperature at the inlet.

• mass_fracs_inlet: Fixed mixture composition at the inlet.

2.10. Gradient Limiters 27

PERFORM Documentation

Full State Specification Inlet

This boundary condition is activated by setting bound_cond_inlet = "fullstate" in solver_params.inp. This
boundary conditions overspecifies the boundary condition by fixing the inlet ghost cell primitive state. This is not a
useful boundary condition for unsteady calculations (unless the flow is supersonic), but is mostly useful for testing how
an outlet boundary condition responds to perturbations propagating downstream.

The applicable boundary condition input parameters are as follows:

• press_inlet: Fixed static pressure at the inlet.

• vel_inlet: Fixed velocity at the inlet.

• temp_inlet: Fixed static temperature at the inlet.

• mass_fracs_inlet: Fixed mixture composition at the inlet

• pert_type_inlet (optional): Accepts "pressure", "velocity", or "temperature" to perturb the values
of the appropriate fixed quantity.

Mean Flow Inlet

This boundary condition is activated by setting bound_cond_inlet = "meanflow" in solver_params.inp. This
boundary condition provides a non-reflective inlet that requires some sense of a mean flow (or the flow infinitely far
upstream) about which the unsteady flow is simply a perturbation. It effectively fixes the incoming characteristics while
allowing the outgoing characteristics to be transmitted outside the domain without acoustic reflections.

The applicable boundary condition input parameters are as follows:

• press_inlet: Specified mean upstream static pressure.

• temp_inlet: Specified mean upstream static temperature.

• mass_fracs_inlet: Fixed mixture composition at the inlet.

• vel_inlet: Specified mean upstream value of 𝜌𝑐, where 𝑐 is the sound speed.

• rho_inlet: Specified mean upstream value of 𝜌𝑐𝑝, where 𝑐𝑝 is the specific heat capacity at constant pressure.

• pert_type_inlet (optional): Accepts "pressure" to perturb the mean upstream pressure.

2.11.2 Outlet BCs and Parameters

Fixed Static Pressure Outlet

This boundary condition is activated by setting bound_cond_outlet = "subsonic" in solver_params.inp. This
boundary condition fixes the static pressure at the outlet. As with the stagnation temperature and pressure inlet, this
boundary condition produces acoustic reflections at the outlet.

The applicable boundary condition input parameters are as follows:

• press_outlet: Specified static pressure at the outlet.

• mass_frac_outlet: Fixed mixture composition at the outlet.

• pert_type_outlet (optional): Accepts "pressure" to perturb the pressure at the outlet.

28 Chapter 2. Acknowledgements

PERFORM Documentation

Mean Flow Outlet

This boundary condition is activated by setting bound_cond_outlet = "meanflow" in solver_params.inp. This
boundary condition, as with the mean flow inlet boundary condition, fixes the incoming characteristic while transmitting
the outgoing characteristics without reflections. Again, it requires some sense of a mean flow (or the flow infinitely far
downstream) about which the unsteady flow is simply a perturbation.

The applicable boundary condition input parameters are as follows:

• press_outlet: Specified mean downstream static pressure.

• vel_outlet: Specified mean downstream value of 𝜌𝑐, where 𝑐 is the sound speed.

• rho_outlet: Specified mean downstream value of 𝜌𝑐𝑝, where 𝑐𝑝 is the specific heat capacity at constant pres-
sure.

• pert_type_outlet (optional): Accepts "pressure" to perturb the mean downstream pressure.

2.11.3 Boundary Perturbations

Setting valid values for pert_type_inlet or pert_type_outlet, as well as non-zero values of pert_perc_inlet /
pert_freq_inlet or pert_perc_outlet / pert_freq_outlet, initiates external forcing at the appropriate bound-
ary. The perturbation signal is a simple sinusoid, given for a given perturbed quantity 𝛼 in the boundary ghost cell
as

𝛼(𝑡) = 𝛼

⎛⎝1 + 𝐴

𝑁𝑓∑︁
𝑖=1

sin(2𝜋𝑓𝑖𝑡)

⎞⎠
where 𝛼 is the relevant reference quantity given in solver_params.inp, 𝑓𝑖 are the sig-
nal frequencies in pert_freq_inlet/pert_freq_outlet, and 𝐴 is the amplitude percentage
pert_perc_inlet/pert_perc_outlet.

For example, if the user sets (among other required parameters)

bound_cond_outlet = "meanflow"
press_outlet = 1.0e6
pert_type_outlet = "pressure"
pert_perc_outlet = 0.05
pert_freq = [2000.0, 5000.0]

this will result in two perturbation signals (one of 2 kHz, another of 5 kHz) of the mean downstream static pressure
with amplitude of 50 kPa.

2.12 Time Integrators

This section briefly describes the various numerical time integrators that are available in PERFORM. For details on
each scheme, please refer to the theory documentation.

2.12. Time Integrators 29

PERFORM Documentation

2.12.1 Explicit Integrators

Explicit time integrators depend only on prior time steps, and thus no not require the solution of a linear system. As
there is no concept of a linear solve residual as in the iterative solution of implicit schemes, PERFORM will simply
report the time step iteration number in the terminal. Explicit schemes are generally less stable than implicit schemes
and require smaller time steps, especially for well-resolved combustion problems. However, given the relative cost
of the implicit solve Jacobian calculations and linear system solution in PERFORM, you can sometimes achieve a
cheaper solution with an explicit scheme with a smaller time step over an implicit scheme with a larger time step.

Classic RK4

The classic RK4 scheme is activated by setting time_scheme = "classic_rk4" in solver_params.inp. This
is the classic fourth-order accurate explicit Runge-Kutta scheme, originally proposed by Martin Kutta in 1901. The
Butcher tableau for this scheme is given below.

0 0 0 0 0
1/2 1/2 0 0 0
1/2 0 1/2 0 0
1 0 0 1 0

1/6 1/3 1/3 1/6

Strong Stability-preserving RK3

The strong stability-preserving RK3 (SSPRK3) scheme is activated by setting time_scheme = "ssp_rk3" in
solver_params.inp. Strong stability-preserving methods are named in reference to preserving the strong stabil-
ity properties of the forward Euler scheme while providing higher orders of accuracy. This scheme provides such a
third-order accurate scheme. The Butcher tableau for this scheme is given below.

0 0 0 0
1 1 0 0

1/2 1/4 1/4 0
1/6 1/6 2/3

Jameson Low-storage Scheme

The Jameson low-storage scheme by setting time_scheme = "jameson_low_store" in solver_params.inp.
What we refer to as the “Jameson low-storage scheme” is simply a scheme presented by Jameson which, while only
appropriate for steady calculations, is a vast simplification over of the typical Runge-Kutta methods and extensible to
arbitrary orders of accuracy. For an 𝑠-stage RK scheme, the 𝑖th stage calculation is given by

𝑞𝑖 = 𝑞𝑛 − ∆𝑡

𝑠 + 1 − 𝑖
𝑓(𝑞𝑖−1)

Thus, the scheme only requires the solution at the previous time step and the RHS evaluation at the previous time step,
greatly decreasing the storage cost of the scheme.

30 Chapter 2. Acknowledgements

PERFORM Documentation

2.12.2 Implicit Integrators

Implicit time integrators depend on the system solution at future time steps, and thus can only be solved approximately.
PERFORM uses Newton’s method to iteratively solve the fully-discrete system. Newton’s method is repeatedly applied
until the ℓ2 norm of the linear solve residual converges below the threshold given by res_tol, or subiter_max
iterations are computed. Implicit time integrators generally exhibit excellent stability properties at relatively large time
steps. As such, they are well-suited to combustion problems, which are typically extremely stiff due to the strong
exponential non-linearity arising from the reaction source term. However, the cost of computing the Jacobian of the
RHS function and solving the stiff linear system can be quite expensive relative to the cost of computing the RHS side
for simple 1D problems.

Backwards Differentiation Formula

Backwards differentiation formula (BDF) schemes are activated by setting time_scheme = "bdf" in
solver_params.inp. BDF schemes are a particular class of linear multi-step schemes. As of the writing of
this section, PERFORM is capable of computing the first-order, second-order, third-order, and fourth-order accurate
BDF schemes. However, it is not advised to use anything higher than the second-order accurate scheme (time_order
= 2), as these higher-order accurate schemes can sometimes be unstable.

2.12.3 Dual Time-stepping

Dual time-stepping [VM95] is activated by using implicit time integration scheme and setting dual_time = True in
solver_params.inp. This method is a time integration method which adds a pseudo-time derivative to the governing
equations,

Γ
𝜕q𝑝

𝜕𝜏
+

𝜕q

𝜕𝑡
+

𝜕

𝜕𝑥
(f − f𝑣) = s

where 𝜏 is the pseudo-time variable, q𝑝 = [𝑝 𝑢 𝑇 𝑌𝑙]
⊤ are the primitive variables, and Γ = 𝜕q/𝜕q𝑝. Numerical

integration of these equations with an implicit solver has two beneficial effects: the pseudo-time term has the effect of
regularizing the linear solve, improving its stability, and the primitive state q𝑝 can be solved for directly, instead of the
conservative state q. This latter point is particularly key for reacting systems, as computing the primitive state from the
conservative state can be extremely challenging when using a thermally-perfect or real gas model.

2.13 Gas Models

This section describes the models available for describing the thermodynamic and transport properties of gases. As of
the writing of this section, there are no plans to include real gas models, and so all models will make the perfect gas
assumption. This means that all intermolecular forces are neglected, and the gas is governed by the ideal gas law

𝑝 = 𝜌𝑅𝑇

The two gas models which are planned to be included in PERFORM differ in how thermodynamic properties (e.g.
enthalpy, entropy) and transport properties (e.g. dynamic viscosity, diffusion coefficients) are calculated.

2.13. Gas Models 31

PERFORM Documentation

2.13.1 Calorically-perfect Gas

The calorically perfect gas model is activated by setting gas_model = "cpg" in the chem_file. The CPG model
assumes that the heat capacity at constant pressure for each species is constant, i.e. 𝑐𝑝,𝑙(𝑇) = 𝑐𝑝,𝑙. These values are
given in the chem_file via cp. The species enthalpies are thus given by

ℎ𝑙 = ℎ𝑟𝑒𝑓,𝑙 + 𝑐𝑝,𝑙𝑇

where the reference enthalpies at 0 K are given in the chem_file via enth_ref.

Species dynamic viscosities are computed via Sutherland’s law,

𝜇𝑙(𝑇) = 𝜇𝑟𝑒𝑓,𝑙

(︂
𝑇

𝑇𝑟𝑒𝑓,𝑙

)︂3/2 (︂
𝑇𝑟𝑒𝑓,𝑙 + 𝑆

𝑇 + 𝑆

)︂
where the species reference temperatures are given in the chem_file via temp_ref, and the reference viscosities via
mu_ref. The Sutherland temperature is given as 𝑆 = 110.4 K. If 𝑇 = 0 K, then 𝜇𝑙 = 𝜇𝑟𝑒𝑓,𝑙.

The species thermal conductivities (required for calculating the heat flux) are given by

𝐾𝑙 =
𝜇𝑙𝑐𝑝,𝑙
Pr𝑙

Where the species Prandtl numbers Pr𝑙 are given in the chem_file via pr. The binary diffusion coefficients of each
species into the mixture is given by

𝐷𝑙,𝑀 =
𝜇𝑙

𝜌Sc𝑙

where the species Schmidt number Sc𝑙 are given in the chem_file via sc.

Additional details on the CPG gas model, particularly on computing the mixture thermodynamic and transport proper-
ties, can be found in the theory documentation.

2.13.2 Thermally-perfect Gas

Coming soon!

2.14 Reaction Models

This section briefly describes the reaction models available in PERFORM. For a comprehensive description of com-
bustion mechanics well beyond the reaction models covered here (though also including them), we direct the reader to
Combustion by Glassman and Yetter [GY08].

2.14.1 Finite-rate Mechanisms

Finite-rate reactions generally describe mixtures in chemical non-equilibrium, opposed to infinitely fast chemistry in
which reactions are assumed to proceed to completion instantaneously. Finite-rate mechanisms must, as the name
implies, compute finite reaction rates.

To preface this, we begin with the general form of the 𝑚th reaction (in a set of 𝑁𝑟 reactions) between 𝑁𝑌 chemical
species, given by

𝑁𝑌∑︁
𝑙=1

𝜈′𝑙,𝑚𝜒𝑙

𝑘𝑟,𝑚

�
𝑘𝑓,𝑚

𝑁𝑌∑︁
𝑙=1

𝜈′′𝑙,𝑚𝜒𝑙

32 Chapter 2. Acknowledgements

PERFORM Documentation

where 𝜒𝑙 is the chemical formula for the 𝑙th chemical species, and 𝜈′𝑙,𝑚 and 𝜈′′𝑙,𝑚 are the stoichiometric coefficients of
the reactants and products, respectively. These stoichiometric coefficients are input into PERFORM as the difference
between the reactant coefficient and the product coefficient, i.e. 𝜈𝑙,𝑚 = 𝜈′𝑙,𝑚 − 𝜈′′𝑙,𝑚, via nu in the chem_file.

The coefficients 𝑘𝑓,𝑚 and 𝑘𝑟,𝑚 are the forward and reverse reaction rates for the 𝑚th reaction. The forward reaction
rate is computed as an Arrhenius rate, given by the formula

𝑘𝑓,𝑚 = 𝐴𝑚𝑇 𝑏𝑚exp
(︂
−𝐸𝑎,𝑚

𝑅𝑢𝑇

)︂
where the coefficients 𝐴𝑚, 𝑏𝑚, and 𝐸𝑎,𝑚 are tabulated constants given by the reaction mechanism, given by
pre_exp_fact, temp_exp, and act_energy, respectively, in the chem_file.

The reaction source term 𝜔̇𝑙 introduced in Governing Equations is computed as a function of reaction “rates of progress”
𝑤𝑚

𝜔̇𝑙 = 𝑊𝑙

𝑁𝑟∑︁
𝑚=1

(𝜈′′𝑙,𝑚 − 𝜈′𝑙,𝑚)𝑤𝑚

where 𝑊𝑙 is the molecular weight of the 𝑙th species. The following methods are concerned with the calculation of these
rates of progress.

Irreversible Mechanisms

The irreversible reaction mechanism model is activated by setting reaction_model = "fr_irrev" in the
chem_file. An irreversible finite-rate mechanism assumes that reactions only proceed in the forward direction, i.e.
converting reactants to products and neglecting the reverse reaction rate 𝑘𝑟,𝑚. The rate of progress for the 𝑚th reaction
is given by

𝑤𝑚 = 𝑘𝑓,𝑚

𝑁𝑌∏︁
𝑙=1

[𝑋𝑙]
𝜈𝑙,𝑚

where [𝑋𝑙] is the molar concentration of the 𝑙th species. Additionally, 𝜈𝑙,𝑚 are tabulated constants for each species and
reaction which are input in the chem_file via nu_arr.

Irreversible reactions vastly simplify the calculation of the reaction source term, at the expense of accuracy. The
exponential constants 𝜈𝑙,𝑚 are empirically-determined and may not be accurate under all flow and reaction regimes.
The reduced cost of these mechanisms is often extremely attractive, and errors incurred by their approximations may
be within acceptable limits.

Reversible Mechanisms

Coming soon!

2.15 Reduced-order Modeling

Reduced-order modeling, in a broad sense, aims to decrease the computational cost and complexity of numerical so-
lutions of systems governed by ordinary differential equations by vastly reducing the number of degrees of freedom
being solved for. For practical engineering systems, the number of degrees of freedom arising from complex governing
equations and well-refined computational meshes can easily reach the tens or hundreds of millions. The solution of
these systems require powerful supercomputers which consume vast amounts of electricity, money, and manpower to
operate and maintain. A means of reducing this cost of computing the full-order model (FOM) by reducing the number
of degrees of freedom, with minimal loss of accuracy, is thus highly sought after.

2.15. Reduced-order Modeling 33

PERFORM Documentation

Practical combustion systems (e.g. gas turbines, rocket engines) are particularly challenging, as the characteristic
spatio-temporal scales of flames are orders of magnitude smaller than those of non-reacting fluid flows. Simulations
of such systems thus require highly-refined meshes and tiny time step sizes, resulting in exorbitant computational costs
to simulate mere milliseconds of physical time. As such, CFD has yet to play a significant role in the design and
control of practical combustion systems. The goal of the US Air Force Center of Excellence funding this project is to
explore suitable methods of model order reduction for rocket combustor applications, but applies broadly to practical
combustion systems.

Reduced-order models (ROMs) generally achieve order reduction by manipulating the full-order governing equations
or solving a surrogate model for which there is an analytical mapping from a non-physical low-dimensional surrogate
state to the physical full-dimensional state. This is opposed to “reduced-fidelity” models which reduce the number of
degrees of freedom in a more empirical fashion. Such methods might include using a reduced reaction mechanism, or
simply reducing the computational mesh refinement.

We can broadly classify ROMs into two categories: intrusive and non-intrusive methods.

2.15.1 Intrusive ROMs

Intrusive ROMs require direct access in some part to the FOM numerical solver routines. These methods generally
manipulate the FOM governing equations, e.g. projecting the system onto a low-dimensional subspace. Obviously,
intrusive ROMs can be time-consuming to develop and run, as they require intimate knowledge of the FOM solver
and the ability to alter its source code. Furthermore, for general non-linear systems, intrusive ROMs may not even
achieve any cost reduction, and require additional “hyper-reduction” methods to effectively reduce the computational
cost. Despite these drawbacks, intrusive ROMs do allow tighter control over the ROM solution, as the solver obviously
has access to vast amounts of information on the system physics and numerics. This allows the method to steer and
control of the solution more actively, and to more easily apply physics-informed constraints to the system.

Many auxillary methods are being actively researched to improve the cost, accuracy, and robustness of intrusive ROMs.
A multitude of mappings from the low-dimensional representation to the full-dimensional state seek to improve ROM
accuracy. Alternative projection methods for projection-based ROMs have been proposed. Closure models attempt
to model the information that has been lost the order-reduction approximation, much like turbulence closure models.
Filtering methods filter out unstable dynamics of ROM systems, while artificial viscosity methods damp the unstable
dynamics.

2.15.2 Non-intrusive ROMs

Non-intrusive ROMs, on the other hand, do not require access to the FOM numerical solver. These methods gener-
ally learn a surrogate model from FOM data, and may not even require a numerical time integration scheme to make
predictions for the evolution of the full-dimensional state. The allure of these models are twofold. First, they are often
extremely simple to develop and deploy, as they do not require solver routines for complex numerical schemes. Fur-
thermore, these models typically fit into the memory of a single computational node, avoiding the need for complicated
distributed-memory code. Second, they usually incur much lower computational cost than intrusive ROMs, as they do
not require the costly evaluation of fluxes, source terms, or large linear solves. These models may be capable of running
in seconds on a single CPU core on a laptop, which makes them far more attractive for many-query applications such as
parametric design or uncertainty quantification. However, without any knowledge of the physical system it is modeling,
a non-intrusive ROM may easily generate non-physical solutions and lack any means of controlling such deviations.

34 Chapter 2. Acknowledgements

https://afcoe.engin.umich.edu/

PERFORM Documentation

2.15.3 ROMs in PERFORM

PERFORM is specifically designed to allow for the rapid prototyping of new ROM methods with minimal effort on
the part of the developer, with the intent of providing a general framework for both intrusive and non-instrusive ROMs.
The hope is that this code can be used by members of the ROM community to quickly implement their ROM methods
and test them for a suite of interesting multi-species and reacting 1D flow problems.

As of the writing of this section, PERFORM is capable of computing linear and non-linear projection-based ROMs
using several projection methods. Several non-intrusive ROMs and closure models will be added in the near future.

If you have questions on how to best implement your ROM method in PERFORM, please feel free to start a new
issue on the Github page with a brief description of the method and a paper on the method. We can give you some
suggestions on how it might be most seamlessly integrated into the current class hierarchy, and you’re welcome to make
a pull request once you’re finished coding it up.

2.16 ROM Input Files

This section outlines the various input files that are required to run ROMs in PERFORM, as well as the input parameters
that are used in text input files. If you are having issues running a case (in particular, experiencing a KeyError error),
please check that all of your input parameters are set correctly, and use this page as a reference. Text files inputs should
be formatted exactly as described in Inputs.

Below, the formats and input parameters for each input file are described. For text file inputs, tables containing all pos-
sible parameters are given, along with their expected data type, default value and expected units of measurement (where
applicable). Note that expected types of list of lists is abbreviated as lol for brevity. For detailed explanations of
each parameter, refer to Input Parameter Index.

2.16.1 rom_params.inp

The rom_params.inp file is a text file containing input parameters for running ROM simulations. It specifies all
parameters related to the ROM model and number of models, the latent dimension of each model, and the paths to model
input files and standardization profiles. It must be placed in the working directory alongside solver_params.inp
, and must be named rom_params.inp. Otherwise, the code will not function.

The table below provides input parameters which may be required by any ROM method. Input parameters which are
specific to the neural network autoencoder ROMs are given in Autoencoder Space Mapping Inputs.

Table 7: rom_params.inp input parameters
Parameter Type Default Units
rom_method str - -
var_mapping str - -
space_mapping str - -
num_models int - -
latent_dims list of int [0] -
model_var_idxs lol of int [[-1]] -
model_dir str - -
cent_ic bool False -
norm_sub_cons list of str [""] -
norm_fac_cons list of str [""] -
cent_cons list of str [""] -
norm_sub_prim list of str [""] -
norm_fac_prim list of str [""] -
cent_prim list of str [""] -

2.16. ROM Input Files 35

PERFORM Documentation

Linear Space Mapping Inputs

The parameters described here may be used in rom_params.inp when applying a linear space mapping.

Table 8: Linear space mapping input parameters
Parameter Type Default Units
basis_files list of str - -

Autoencoder Space Mapping Inputs

The parameters described here may be used in rom_params.inp when applying an autoencoder space mapping.

Table 9: Autoencoder space mapping input parameters
Parameter Type Default Units
decoder_files list of str - -
encoder_files list of str - -
decoder_isconv bool False -
decoder_io_format str None -
encoder_isconv bool False -
encoder_io_format str None -

Machine Learning Library Inputs

The parameters described here may be used in rom_params.inpwhen using any ROM method which requires machine
learning models.

Table 10: Machine learning library input parameters
Parameter Type Default Units
ml_library str - -
run_gpu bool False -

2.16.2 Feature Scaling Profiles

Feature scaling is a routine procedure in data science for ensuring that the datasets used to train a model are normalized
and no specific feature is given an inordinate amount of weight in the training procedure. This addresses the wide range
of magnitudes seeing in flow field data: pressure can be 𝒪(1e6), temperature can be 𝒪(1e3), velocity can be 𝒪(10),
and species mass fraction is 𝒪(1). When data is ingested by the model or the model makes a prediction during the
inference stage (e.g. ROM runtime), the same scaling procedure must be applied.

In PERFORM, ROM models are generally trained on and operate on snapshots of the conservative or primitive state
profile. Data standardization of a solution profile (given here generally by u) is computed as

u′ =
u− u𝑐𝑒𝑛𝑡 − u𝑠𝑢𝑏

u𝑓𝑎𝑐

We refer to u𝑐𝑒𝑛𝑡 as the “centering” profile, u𝑠𝑢𝑏 as the “subtractive” normalization profile, and u𝑓𝑎𝑐 as the “factor”
normalization profile. The reverse procedure, de-scaling, is simply given by

u = u′ ⊙ u𝑓𝑎𝑐 + u𝑐𝑒𝑛𝑡 + u𝑠𝑢𝑏

36 Chapter 2. Acknowledgements

PERFORM Documentation

Conservative and primitive state centering profiles are input via cent_cons and cent_prim in rom_params.
inp, respectively. Conservative and primitive subtractive normalization profiles are input via norm_sub_cons and
norm_sub_prim in rom_params.inp, respectively. Finally, the conservative and primitive factor normalization pro-
files are input via norm_fac_cons and norm_fac_prim in rom_params.inp, respectively.

It may seem strange to separate u𝑐𝑒𝑛𝑡 and u𝑠𝑢𝑏, as their repeated summation would simply be wasted FLOPS. Indeed,
under the hood these profiles are summed and treated as a single profile at runtime. However, during the pre-processing
stage it is generally easier for the user to treat these separately. For example, the centering profile may be the time-
averaged mean profile or initial condition profile, while the normalization profiles may come from min-max scaling of
the centered data. We thus allow the user this flexibility in deciding how to express these profiles.

2.16.3 Model Objects

We operate under the assumption that every ROM method provides some mapping from a low-dimensional representa-
tion of the state to the physical full-dimensional state, sometimes referred to as a “decoder.” We generalize this mapping
to allow for multiple decoders which may map to a subset of the state variables, each with their own low-dimensional
state. For example, a ROM method may provide two decoders, one which predicts the pressure and velocity fields, and
another which predicts the temperature and species mass fraction fields. In various contexts this has been referred to
as a “scalar” or “separate” ROM. The more traditional method of using a single decoder for the entire full-dimensional
state, with only one low-dimensional state vector, is sometimes referred to as a “vector” or “coupled” ROM.

The total number of models is given by the num_models parameter in rom_params.inp, and the dimension of each
model’s low-dimensional state is given by each entry in latent_dims. The zero-indexed state variables to which each
model maps is given by each sublist in model_var_idxs. The model object(s) required for this decoding procedure
are specified by mapping-specific input parameters (e.g. basis_files for a linear mapping, and decoder_files for
an autoencoder mapping).

Linear Bases

For ROM models which require a linear basis representation (such as those described in Linear Subspace Projection
ROMs), each model object located by basis_files in rom_params.inp is a three-dimensional NumPy binary (*.
npy) containing the linear trial basis for that model. The first dimension is the number of state variables that the trial
basis represents, the second dimension is the number of cells in the computational domain, and the third dimension is
the number of trial modes generated by the basis calculation procedure. This final dimension is the maximum number
of trial modes which may be requested via the corresponding entry in latent_dims.

Neural Networks

The model objects for neural network-based ROMs are specific to each network training framework (e.g. Keras, Py-
Torch). In general, they are serialized as a single file when saved to disk and can be deserialized at runtime.

The expected format in which an input neural network model interacts with field data is given by *_isconv and
*_io_format in rom_params.inp. If *_isconv = True, it is assumed that the network layers which input/output
state data are convolutional layers, which require that the field data have separated spatial and variable dimensions.
The order of these dimensions in the neural network are given by *_io_format. As of the writing of this section,
the only valid options are "channels_first" and "channels_last". The former indicates that the neural network
operates with field data arrays whose first dimension is the batch size, the second dimension is the number of state
variables (“channels”), and the final channel is the spatial dimension. The latter swaps the channel dimension and spatial
dimension ordering. If *_isconv = False, it is assumed that field data is in “flattened” format when input/output to
the neural network model.

2.16. ROM Input Files 37

PERFORM Documentation

TensorFlow-Keras Autoencoders

TensorFloat-Keras autoencoders must be serialized separately as an encoder and a decoder via the model.save()
function. As of the writing of this section, only the older Keras HDF5 format (*.h5) can be loaded by PERFORM. The
decoder files are located via decoder_files in rom_params.inp, while the encoder files (which are only required
when initializing the low-dimensional solution from the full-state solution or when encoder_jacob = True) are
located via encoder_files.

NOTE: if running with run_gpu = False (making model inferences on the CPU), note that TensorFlow convo-
lutional layers cannot handle a channels_first format. If your network format conforms to *_io_format =
"channels_first", the code will terminate with an error. This issue could theoretically be fixed by the user by
including a permute layer to change the layer input ordering to channels_last before any convolutional layers, but
we err on the side of caution here.

2.17 Linear Subspace Projection ROMs

We begin describing linear projection ROMs by defining a general non-linear ODE which governs our dynamical
system, given by

𝑑q

𝑑𝑡
= R(q)

where for ODEs describing conservation laws, q ∈ R𝑁 is the conservative state, and the non-linear right-hand side
(RHS) term R(q) is the spatial discretization of fluxes, source terms, and body forces. For linear subspace ROMs, we
make an approximate representation of the system state via a linear combination of basis vectors,

q ≈ ̃︀q = q + P

𝐾∑︁
𝑖=1

v𝑖̂︀𝑞𝑖 = q + PV̂︀q
The basis V ∈ R𝑁×𝐾 is referred to as the “trial basis”, and the vector ̂︀q ∈ R𝐾 are the generalized coordinates. The
matrix P is simply a constant diagonal matrix which scales the model prediction. 𝐾, sometimes referred to as the
“latent dimension”, is chosen such that 𝐾 ≪ 𝑁 . By far the most popular means of computing the trial basis is the
proper orthogonal decomposition method.

Inserting this approximation into the FOM ODE, projecting the governing equations via the “test” basis W ∈ R𝑁×𝐾 ,
and rearranging terms arrives at

𝑑̂︀q
𝑑𝑡

=
[︀
W𝑇V

]︀−1
W𝑇P−1R (̃︀q)

This is now a 𝐾-dimensional ODE which may be evolved with any desired time integration scheme. However, for
general non-linear ODEs, it is unlikely that any cost reduction is actually achieved, as the majority of the computational
cost for sufficiently complex.

The following sections provide brief details on how various linear subspace projection ROMs are formulated in relation
to the above ROM formulation.

38 Chapter 2. Acknowledgements

PERFORM Documentation

2.17.1 Galerkin Projection

The linear Galerkin projection ROM [RCM04] is activated by setting rom_method = "linear_galerkin_proj".
As the name implies, this method applies Galerkin projection by selecting W = V. If V is an orthonormal basis, the
ROM formulation simplifies to

𝑑̂︀q
𝑑𝑡

= V𝑇P−1R (̃︀q)

Although Galerkin projection ROMs have been extensively studied and can be successful when applied to fairly simple
fluid flow problems, they exhibit very poor accuracy and stability for practical flows.

This method requires setting the cent_cons, norm_sub_cons, and norm_fac_cons feature scaling profiles in
rom_params.inp.

NOTE: Galerkin ROMs target the conservative variables, and the trial bases input via model_files should be trained
as such. If you attempt to run the simulation with dual time-stepping (dual_time = True) it will terminate with an
error.

2.17.2 LSPG Projection

The linear least-squares Petrov-Galerkin (LSPG) projection ROM [CBA17] is activated by setting rom_method =
"linear_lspg_proj". This method is so named because it is derived by solving the non-linear least-square problem

̂︀q = 𝑎𝑟𝑔𝑚𝑖𝑛
a∈R𝐾

||P−1r (q + PVa) ||22

where r() is the fully-discrete residual, i.e. the set of equations arising from discretizing the FOM ODE in time. Solving
this problem via Gauss-Newton, the 𝑠th subiteration is given by

(W𝑠)
𝑇
W𝑠(̂︀q𝑠+1 − ̂︀q𝑠) = − (W𝑠)

𝑇
P−1r (̃︀q𝑠)

where

W𝑠 = P−1 𝜕r (̃︀q𝑠)

𝜕̃︀q PV

In general, LSPG has been shown to produce more stable and accurate ROMs than Galerkin ROMs for a given number
of trial modes. However, LSPG ROMs are significantly more computationally expensive (requiring the calculation of a
time-variant test basis which involves the residual Jacobian). Further, LSPG ROMs deteriorate to a Galerkin projection
ROM when using an explicit time integrator or as ∆𝑡 → 0. If you attempt to run an LSPG ROM with an explicit time
integrator, the code will terminate with an error.

This method requires setting the cent_cons, norm_sub_cons, and norm_fac_cons feature scaling profiles in
rom_params.inp.

NOTE: LSPG ROMs, as with Galerkin ROMs, target the conservative variables, and the trial bases input via
model_files should be trained as such. If you attempt to run the simulation with dual time-stepping (dual_time =
True) it will terminate with an error.

2.17. Linear Subspace Projection ROMs 39

PERFORM Documentation

2.17.3 SP-LSVT Projection

The linear structure-preserving least-squares with variable transformations (SP-LSVT) projection ROM [HWDM20]
is activated by setting rom_method = "linear_splsvt_proj". This method leverages Dual Time-stepping to allow
the trial bases to target an arbitrary (but complete) set of solution variables, instead of the conservative variables. This
is particularly useful for combustion problems, where we would like to work with the primitive variables. To begin,
the method proposes a similar representation of the primitive state as a linear combination of basis vectors

q𝑝 ≈ ̃︀q𝑝 = q𝑝 + H

𝐾∑︁
𝑖=1

v𝑝,𝑖̂︀𝑞𝑝,𝑖 = q𝑝 + HV𝑝̂︀q𝑝

where V𝑝 and ̂︀q𝑝 are the trial basis and generalized coordinates for the primitive variable representation. Here, H is a
constant diagonal scaling matrix for the primitive state. Similar to LSPG, SP-LSVT solves the non-linear least-squares
problem

̂︀q𝑝 = 𝑎𝑟𝑔𝑚𝑖𝑛
a∈R𝐾

||P−1r𝜏
(︀
q𝑝 + HV𝑝a

)︀
||22

where r𝜏 () is the fully-discrete dual-time residual. Solving this problem via Gauss-Newton, the 𝑠th subiteration is
given by

(W𝑠)
𝑇
W𝑠(̂︀q𝑠+1

𝑝 − ̂︀q𝑠
𝑝) = − (W𝑠)

𝑇
P−1r𝜏

(︀̃︀q𝑠
𝑝

)︀
where

W𝑠 = P−1
𝜕r𝜏

(︀̃︀q𝑠
𝑝

)︀
𝜕̃︀q𝑝

HV𝑝

SP-LSVT is quite similar to LSPG, but has shown exceptional accuracy and stability improvements over LSPG for
combustion problems.

This method requires setting the cent_prim, norm_sub_prim, norm_fac_prim, and norm_fac_cons feature scaling
profiles in rom_params.inp.

NOTE: SP-LSVT ROMs target the primitive variables, and the trial bases input via model_files should be trained
as such. If you attempt to run the simulation without dual time-stepping (dual_time = False) it will terminate with
an error.

2.18 Non-linear Subspace Projection ROMs

Over the past decade, it has become increasingly clear that linear subspace ROMs, i.e. those that represent the solution
as a linear combination of trial basis vectors, are severely lacking when applied to practical fluid flow problems. Their
difficulty in reconstructing sharp gradients and their inability to generalize well beyond the training dataset call into
question whether they can be a useful tool for parametric or future-state prediction. This idea is synthesized by the
concept of the Kolmogorov n-width [Pin85],

𝑑𝑛(𝒜,𝒳) , inf
𝒳𝑛

sup
𝑥∈𝒜

inf
𝑦∈𝒳𝑛

||𝑥− 𝑦||𝒳

which measures how well a subset 𝒜 of a space 𝒳 can be represented by an 𝑛-dimensional subspace 𝒳𝑛. Those subsets
for which an increase in 𝑛 does not improve the representation much are said to have a “slowly-decaying” n-width. The
solution of advection-dominated flows, which characterize most practical engineering systems, have a slowly-decaying
n-width, and as such a linear representation of the solution may be quite poor.

Non-linear representations of the solution, and the ROM methods which arise from them, seek to overcome this prob-
lem. The solution approximation can be recast in a more general form as

q ≈ ̃︀q = q + Pg (̂︀q)

40 Chapter 2. Acknowledgements

PERFORM Documentation

where g : R𝐾 → R𝑁 is some non-linear mapping from the low-dimensional state to the physical full-dimensional state.
In theory, the non-linear solution manifold to which the decoder maps can more accurately represent the governing ODE
solution manifold.

A particularly attractive option for developing this non-linear mapping is from autoencoders, an unsupervised learning
neural network architecture. This class of neural networks attempts to learn the identity mapping by ingesting full-
dimensional state data, “encoding” this to a low-dimensional state (the “code”), and then attempting to “decode” this
back to the original full-dimensional state data. After the network is trained, the “decoder” half of the network is used
as the non-linear mapping g in the ROM.

This approach has seen exceptional success for fairly simple advection-dominated problems, but is still in its infancy
and has yet to be tested for any practical problems. However, it is not without its drawbacks. The cost of evaluating
the neural network decoder (and its Jacobian, as will be seen later) greatly exceeds the cost of computing the linear
“decoding” V̂︀q. The decoder predictions are also prone to noisy predictions even in regions of smooth flow. Although
work is being done in developing graph neural networks, the traditional convolutional autoencoders can only be applied
to solutions defined on Cartesian meshes. Further, the neural network is a black box model with no true sense of
optimality besides “low” training and validation error.

The implementation of these non-linear autoencoder ROMs is dependent on the software library used to train the neural
network, e.g. TensorFlow-Keras [AAB+15, C+15] or PyTorch. Some details on how these neural networks should be
formatted and input to PERFORM are given in TensorFlow-Keras Autoencoders.

2.18.1 Manifold Galerkin Projection

The non-linear autoencoder manifold Galerkin projection ROM [LC20] with TensorFlow-Keras neural networks is
activated by setting rom_method = "autoencoder_galerkin_proj_tfkeras". After inserting the approximate
state into the FOM ODE, this method leverages the chain rule and rearranges terms to arrive at

𝑑̂︀q
𝑑𝑡

= J+
𝑑 (̂︀q)P−1R(̃︀q)

where J𝑑 , 𝜕g/𝜕̂︀q : R𝐾 → R𝑁×𝐾 is the Jacobian of the decoder.

This method has been shown to greatly outperform linear Galerkin projection ROMs for simple advection-dominated
flow problems, immensely improving shock resolution and parametric prediction at extremely low 𝐾. Unsurprisingly
though, the computational cost of this method is much, much greater than its linear subspace counterpart.

This method requires setting the cent_cons, norm_sub_cons, and norm_fac_cons feature scaling profiles in
rom_params.inp.

NOTE: Manifold Galerkin ROMs target the conservative variables, and the encoders/decoders input via
encoder_files/model_files, respectively, should be trained as such. If you attempt to run the simulation with
dual time-stepping (dual_time = True) it will terminate with an error.

Encoder Jacobian Form

Due to the exceptional cost of this method, an approximate method has been proposed to at least circumvent the cost
of computing the pseudo-inverse of the decoder Jacobian. Under some generous assumptions of negligible error in the
autoencoding procedure, we can approximate

J+
𝑑 (̂︀q) ≈ J𝑒 (̃︀q)

where J𝑒 , 𝜕h/𝜕̃︀q : R𝑁 → R𝐾×𝑁 is the Jacobian of the encoder half of the autoencoder, h(̃︀q). Unfortunately,
this method is only applicable to Galerkin projection ROMs using explicit time integrators, as implicit time integration
requires both the decoder Jacobian and its pseudo-inverse, eliminating the usefulness of this substitution. This method
has yet to be demonstrated successfully on practical problems, but has had some success for the parametrized 1D
Burgers’ equation.

2.18. Non-linear Subspace Projection ROMs 41

PERFORM Documentation

The encoder Jacobian form for manifold Galerkin ROMs with explicit time integrators is activated by setting
encoder_jacob = True in rom_params.inp. Of course, the encoders must be provided via encoder_files.

2.18.2 Manifold LSPG Projection

The non-linear autoencoder manifold least-squares Petrov-Galerkin (LSPG) projection ROM [LC20] with TensorFlow-
Keras neural networks is activated by setting rom_method = "autoencoder_lspg_proj_tfkeras". The method
follows the same procedure as the linear equivalent, but the resulting test basis takes the form

W𝑠 = P−1 𝜕r (̃︀q𝑠)

𝜕̃︀q PJ𝑑(̂︀q𝑠)

Some results indicate that manifold LSPG ROMs are more accurate than manifold Galerkin ROMs for a given number
of trial modes. However, as with the linear ROMs, manifold LSPG is significantly more computationally expensive and
still deteriorates to manifold Galerkin projection when using an explicit time integrator or as ∆𝑡 → 0. If you attempt
to run an LSPG ROM with an explicit time integrator, the code will terminate with an error.

This method requires setting the cent_cons, norm_sub_cons, and norm_fac_cons feature scaling profiles in
rom_params.inp.

NOTE: Manifold LSPG ROMs, as with manifold Galerkin ROMs, target the conservative variables, and the en-
coders/decoders input via encoder_files/model_files, respectively, should be trained as such. If you attempt
to run the simulation with dual time-stepping (dual_time = True) it will terminate with an error.

2.18.3 SP-LSVT Projection

The non-linear autoencoder manifold structure-preserving least-squares with variable transformations (SP-
LSVT) projection ROM with TensorFlow-Keras neural networks is activated by setting rom_method =
"autoencoder_splsvt_proj_tfkeras". As with its linear counterpart, the manifold SP-LSVT begins by providing
a representation of the primitive state

q𝑝 ≈ ̃︀q𝑝 = q𝑝 + Hg𝑝 (̂︀q𝑝)

Again following the same dual-time residual minimization procedure arrives at a similar test basis of the form

W𝑠 = P−1
𝜕r𝜏

(︀̃︀q𝑠
𝑝

)︀
𝜕̃︀q𝑝

HJ𝑑,𝑝

(︀̂︀q𝑠
𝑝

)︀
Again, although manifold SP-LSVT is quite similar to manifold LSPG, early results indicate that it is much more
accurate and stable than manifold LSPG for combustion problems.

This method requires setting the cent_prim, norm_sub_prim, norm_fac_prim, and norm_fac_cons feature scaling
profiles in rom_params.inp.

NOTE: Manifold SP-LSVT ROMs target the primitive variables, and the encoders/decoders input via
encoder_files/model_files, respectively, should be trained as such. If you attempt to run the simulation with-
out dual time-stepping (dual_time = False) it will terminate with an error.

42 Chapter 2. Acknowledgements

PERFORM Documentation

2.19 License

MIT License

Copyright (c) 2020 Christopher R. Wentland

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

2.20 References

2.19. License 43

PERFORM Documentation

44 Chapter 2. Acknowledgements

BIBLIOGRAPHY

[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey
Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,
Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
TensorFlow: large-scale machine learning on heterogeneous systems. 2015. Software available from ten-
sorflow.org. URL: https://www.tensorflow.org/.

[BJ89] Timothy Barth and Dennis Jespersen. The design and application of upwind schemes on unstructured
meshes. In 27th Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1989.
doi:10.2514/6.1989-366.

[CBA17] Kevin Carlberg, Matthew Barone, and Habir Antil. Galerkin v. least-squares Petrov–Galerkin pro-
jection in nonlinear model reduction. Journal of Computational Physics, 330:693–734, 2017.
doi:10.1016/j.jcp.2016.10.033.

[C+15] François Chollet and others. Keras. 2015. URL: https://keras.io.

[DXSM04] Li Ding, Guoping Xia, Venkateswaran Sankaran, and Charles L. Merkle. Computational framework for
complex fluid physics applications. Third International Conference on Computational Fluid Dynamics,
pages 619–624, 2004. doi:10.1007/3-540-31801-1_89.

[GY08] Irvin Glassman and Richard A Yetter. Combustion. Academic Press, 2008.

[Har12] Matthew E. Harvazinski. Modeling self-excited combustion instabilities using a combination of two- and
three-dimensional simulations. PhD thesis, Purdue University, 2012.

[HWDM20] Cheng Huang, Christopher R. Wentland, Karthik Duraisamy, and Charles Merkle. Model reduction for
multi-scale transport problems using structure-preserving least-squares projections with variable transfor-
mation. arXiv:2011.02072v3, 2020.

[LC20] Kookjin Lee and Kevin T. Carlberg. Model reduction of dynamical systems on nonlinear
manifolds using deep convolutional autoencoders. Journal of Computational Physics, 2020.
doi:10.1016/j.jcp.2019.108973.

[Pin85] Allan Pinkus. n-Widths in Approximation Theory. Springer, 1985.

[Roe81] Philip L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Com-
putational Physics, 43(2):357–372, 1981. doi:10.1016/0021-9991(81)90128-5.

[RCM04] Clarence W. Rowley, Tim Colonius, and Richard M. Murray. Model reduction for compressible flows using
pod and galerkin projection. Physica D, 189:115–129, 2004. doi:10.1016/j.physd.2003.03.001.

45

https://www.tensorflow.org/
https://doi.org/10.2514/6.1989-366
https://doi.org/10.1016/j.jcp.2016.10.033
https://keras.io
https://doi.org/10.1007/3-540-31801-1_89
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1016/j.physd.2003.03.001

PERFORM Documentation

[Ven93] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state solutions. In
31st Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics, 1993.
doi:10.2514/6.1993-880.

[VM95] Sankaran Venkateswaran and Charles L. Merkle. Dual time-stepping and preconditioning for unsteady
computations. 33rd Aerospace Sciences Meeting and Exhibit, 1995. doi:10.2514/6.1995-78.

46 Bibliography

https://doi.org/10.2514/6.1993-880
https://doi.org/10.2514/6.1995-78

	Data-driven Modeling for Complex Fluid Physics
	Acknowledgements
	Quick Start
	Dependencies
	Installing
	Running
	Testing

	Example Cases
	Sod Shock Tube
	Transient Contact Surface
	Contact Surface w/ Artificial Forcing

	Standing Flame w/ Artificial Forcing
	Transient Flame
	Transient Flame w/ Artificial Forcing

	Inputs
	solver_params.inp
	Mesh File
	Chemistry File
	Universal Chemistry Inputs
	CPG Inputs
	Finite Rate Irreversible Reaction Inputs

	Initial Condition Inputs
	Piecewise Uniform IC File
	NumPy Primitive IC File
	Restart Files

	rom_params.inp

	Outputs
	Unsteady Solution Data
	Field Data
	Probe Data
	Restart Files

	Visualizations
	Field Plots
	Probe Plots

	Input Parameter Index
	solver_params.inp
	Mesh File
	Chemistry File
	Universal Chemistry Inputs
	CPG Inputs
	Finite Rate Irreversible Reaction Inputs

	Piecewise Uniform IC File
	rom_params.inp
	Linear Space Mapping Inputs
	Autoencoder Space Mapping Inputs
	Machine Learning Library Inputs

	Miscellanea
	Running in “Steady” Mode

	Issues and Contributing
	Governing Equations
	Flux Schemes
	Inviscid Flux Schemes
	Roe Scheme

	Viscous Flux Schemes
	Inviscid Scheme
	Standard Viscous Scheme

	Gradient Limiters
	Barth-Jespersen Limiter
	Venkatakrishnan Limiter

	Boundary Conditions
	Inlet BCs and Parameters
	Fixed Stagnation Temperature and Pressure Inlet
	Full State Specification Inlet
	Mean Flow Inlet

	Outlet BCs and Parameters
	Fixed Static Pressure Outlet
	Mean Flow Outlet

	Boundary Perturbations

	Time Integrators
	Explicit Integrators
	Classic RK4
	Strong Stability-preserving RK3
	Jameson Low-storage Scheme

	Implicit Integrators
	Backwards Differentiation Formula

	Dual Time-stepping

	Gas Models
	Calorically-perfect Gas
	Thermally-perfect Gas

	Reaction Models
	Finite-rate Mechanisms
	Irreversible Mechanisms
	Reversible Mechanisms

	Reduced-order Modeling
	Intrusive ROMs
	Non-intrusive ROMs
	ROMs in PERFORM

	ROM Input Files
	rom_params.inp
	Linear Space Mapping Inputs
	Autoencoder Space Mapping Inputs
	Machine Learning Library Inputs

	Feature Scaling Profiles
	Model Objects
	Linear Bases
	Neural Networks
	TensorFlow-Keras Autoencoders

	Linear Subspace Projection ROMs
	Galerkin Projection
	LSPG Projection
	SP-LSVT Projection

	Non-linear Subspace Projection ROMs
	Manifold Galerkin Projection
	Encoder Jacobian Form

	Manifold LSPG Projection
	SP-LSVT Projection

	License
	References

	Bibliography

